Meta-analysis of microarray data using a pathway-based approach identifies a 37-gene expression signature for systemic lupus erythematosus in human peripheral blood mononuclear cells

Author:

Arasappan Dhivya,Tong Weida,Mummaneni Padmaja,Fang Hong,Amur Shashi

Abstract

Abstract Background A number of publications have reported the use of microarray technology to identify gene expression signatures to infer mechanisms and pathways associated with systemic lupus erythematosus (SLE) in human peripheral blood mononuclear cells. However, meta-analysis approaches with microarray data have not been well-explored in SLE. Methods In this study, a pathway-based meta-analysis was applied to four independent gene expression oligonucleotide microarray data sets to identify gene expression signatures for SLE, and these data sets were confirmed by a fifth independent data set. Results Differentially expressed genes (DEGs) were identified in each data set by comparing expression microarray data from control samples and SLE samples. Using Ingenuity Pathway Analysis software, pathways associated with the DEGs were identified in each of the four data sets. Using the leave one data set out pathway-based meta-analysis approach, a 37-gene metasignature was identified. This SLE metasignature clearly distinguished SLE patients from controls as observed by unsupervised learning methods. The final confirmation of the metasignature was achieved by applying the metasignature to a fifth independent data set. Conclusions The novel pathway-based meta-analysis approach proved to be a useful technique for grouping disparate microarray data sets. This technique allowed for validated conclusions to be drawn across four different data sets and confirmed by an independent fifth data set. The metasignature and pathways identified by using this approach may serve as a source for identifying therapeutic targets for SLE and may possibly be used for diagnostic and monitoring purposes. Moreover, the meta-analysis approach provides a simple, intuitive solution for combining disparate microarray data sets to identify a strong metasignature. Please see Research Highlight: http://genomemedicine.com/content/3/5/30

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3