Challenges in cardiac device innovation: is neuroimaging an appropriate endpoint? Consensus from the 2013 Yale-UCL Cardiac Device Innovation Summit
-
Published:2013-12
Issue:1
Volume:11
Page:
-
ISSN:1741-7015
-
Container-title:BMC Medicine
-
language:en
-
Short-container-title:BMC Med
Author:
Meller Stephanie M,Baumbach Andreas,Voros Szilard,Mullen Michael,Lansky Alexandra J
Abstract
Abstract
Background
Neurological events associated with transcatheter aortic valve implantation are major contributors to morbidity and mortality. Choosing an appropriate endpoint to determine neuroprotection device efficacy is a key difficulty inhibiting the translation of the innovation from the laboratory to the bedside. Cost and sample size limitations inhibit the feasibility of using the rate of clinical (such as stroke or other cerebral) events as the primary efficacy endpoint. This paper focuses on consensus opinions from the 2013 Yale-University College London (UCL) Device Innovation Summit.
Discussion
Neuroimaging, specifically diffusion-weighted magnetic resonance imaging (DW MRI), may serve as a surrogate endpoint for clinical studies detecting cerebral events in which cost and sample-size limitations prohibit the use of clinical outcomes. A major limitation of using imaging to prove efficacy in cardiac device studies is that no standardized endpoint exists. Ongoing trials investigating cerebral protection devices for transcatheter aortic valve implantation are utilizing and reporting various qualitative and quantitative DW MRI values; however, single lesion volume, number of new lesions, and total lesion volume have been found to be the most reproducible and prognostically important imaging measures.
Summary
DW MRI may be a useful surrogate endpoint for clinical studies detecting cerebral events to determine the device’s success in neurological protection. Consensus from the 2013 Yale-UCL Device Innovation Summit specifically recommends the reporting of mean single lesion volume, number of new lesions, and total volume, and encourages European Union (EU)-US regulatory consensus in the guidance of implementing this endpoint.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S: Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010, 363: 1597-1607. 10.1056/NEJMoa1008232. 2. Kodali SK, Williams MR, Smith CR, Svensson LG, Webb JG, Makkar RR, Fontana GP, Dewey TM, Thourani VH, Pichard AD, Fischbein M, Szeto WY, Lim S, Greason KL, Teirstein PS, Malaisrie SC, Douglas PS, Hahn RT, Whisenant B, Zajarias A, Wang D, Akin JJ, Anderson WN, Leon MB: Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med. 2012, 366: 1686-1695. 10.1056/NEJMoa1200384. 3. Masson JB, Kovac J, Schuler G, Ye J, Cheung A, Kapadia S, Tuzcu ME, Kodali S, Leon MB, Webb JG: Transcatheter aortic valve implantation: review of the nature, management, and avoidance of procedural complications. JACC Cardiovasc Interv. 2009, 2: 811-820. 10.1016/j.jcin.2009.07.005. 4. Nuis RJ, Piazza N, Van Mieghem NM, Otten AM, Tzikas A, Schultz CJ, van der Boon R, van Geuns RJ, van Domburg RT, Koudstaal PJ, Kappetein AP, Serruys PW, de Jaegere PP: In-hospital complications after transcatheter aortic valve implantation revisited according to the valve academic research consortium definitions. Catheter Cardiovasc Interv. 2011, 78: 457-467. 5. Lefevre F, Koskela J, Hubert J, Kraigher H, Longauer R, Olrik DC, Schuler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednarova D, Bordacs S, Collin E, De Cuyper B, De Vries SM, Eysteinsson T, Frydl J, Haverkamp M, Ivankovic M, Konrad H, Koziol C, Maaten T, Paino EN, Ozturk H, Pandeva ID, Parnuta G, Pilipovic A, et al: Dynamic conservation of forest genetic resources in 33 European countries. Conserv Biol. 2013, 27: 373-384. 10.1111/j.1523-1739.2012.01961.x.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|