Wnts acting through canonical and noncanonical signaling pathways exert opposite effects on hippocampal synapse formation

Author:

Davis Elizabeth K,Zou Yimin,Ghosh Anirvan

Abstract

Abstract Background Wnt proteins comprise a large class of signaling molecules that regulate a variety of developmental processes, including synapse formation. Previous studies have shown Wnts to be involved in both the induction and prevention of synapses in a number of different organisms. However, it is not clear whether the influence of Wnts on synapses is a result of Wnts' behavior in different organisms or differences in the activity of different Wnt ligands. Results We used in situ hybridization to show that several Wnt ligands (Wnt3, Wnt5a, Wnt7a, and Wnt7b) and their receptors, Frizzled, are expressed in the developing hippocampus during the period of synapse formation in rodents. We used recombinant Wnt protein or Wnt conditioned media to explore the effects of Wnts on synapses in hippocampal cultures. We found that Wnt7a and Wnt7b activate canonical signaling, whereas Wnt5a activates a noncanonical pathway. The activation of the canonical pathway, either through pathway manipulations or through Wnt stimulation, increases presynaptic inputs. In contrast, exposure to Wnt5a, which activates a noncanonical signaling pathway, decreases the number of presynaptic terminals. Conclusion Our observations suggest that the pro- and antisynaptogenic effects of Wnt proteins are associated with the activation of the canonical and noncanonical Wnt signaling pathways.

Publisher

Springer Science and Business Media LLC

Subject

Developmental Neuroscience

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3