Author:
Locher Heiko,Frijns Johan HM,van Iperen Liesbeth,de Groot John CMJ,Huisman Margriet A,Chuva de Sousa Lopes Susana M
Abstract
Abstract
Background
Hearing depends on correct functioning of the cochlear hair cells, and their innervation by spiral ganglion neurons. Most of the insight into the embryological and molecular development of this sensory system has been derived from animal studies. In contrast, little is known about the molecular expression patterns and dynamics of signaling molecules during normal fetal development of the human cochlea. In this study, we investigated the onset of hair cell differentiation and innervation in the human fetal cochlea at various stages of development.
Results
At 10 weeks of gestation, we observed a prosensory domain expressing SOX2 and SOX9/SOX10 within the cochlear duct epithelium. In this domain, hair cell differentiation was consistently present from 12 weeks, coinciding with downregulation of SOX9/SOX10, to be followed several weeks later by downregulation of SOX2. Outgrowing neurites from spiral ganglion neurons were found penetrating into the cochlear duct epithelium prior to hair cell differentiation, and directly targeted the hair cells as they developed. Ubiquitous Peripherin expression by spiral ganglion neurons gradually diminished and became restricted to the type II spiral ganglion neurons by 18 weeks. At 20 weeks, when the onset of human hearing is thought to take place, the expression profiles in hair cells and spiral ganglion neurons matched the expression patterns of the adult mammalian cochleae.
Conclusions
Our study provides new insights into the fetal development of the human cochlea, contributing to our understanding of deafness and to the development of new therapeutic strategies to restore hearing.
Publisher
Springer Science and Business Media LLC
Subject
Developmental Neuroscience
Reference38 articles.
1. Rask-Andersen H, Ekvall L, Scholtz A, Schrott-Fischer A: Structural/audiometric correlations in a human inner ear with noise-induced hearing loss. Hear Res. 2000, 141: 129-139. 10.1016/S0378-5955(99)00216-6.
2. Merchant SN, Nadol JB: Schuknecht’s Pathology of the Ear. 2010, Helton, Connecticut: People’s Medical Publishing House-USA, 3
3. O’Rahilly R: The early development of the otic vesicle in staged human embryos. J Embryol Exp Morphol. 1963, 11: 741-755.
4. Moore JK, Linthicum FH: The human auditory system: a timeline of development. Int J Audiol. 2007, 46: 460-478. 10.1080/14992020701383019.
5. Pujol R, Lavigne-Rebillard M: Early stages of innervation and sensory cell differentiation in the human fetal organ of Corti. Acta Otolaryngol Suppl. 1985, 423: 43-50.
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献