Author:
Young-Pearse Tracy L,Chen Allen C,Chang Rui,Marquez Cesar,Selkoe Dennis J
Abstract
Abstract
Background
β-Amyloid precursor protein (APP) has been reported to play a role in the outgrowth of neurites from cultured neurons. Both cell-surface APP and its soluble, ectodomain cleavage product (APPs-α) have been implicated in regulating the length and branching of neurites in a variety of assays, but the mechanism by which APP performs this function is not understood.
Results
Here, we report that APP is required for proper neurite outgrowth in a cell autonomous manner, both in vitro and in vivo. Neurons that lack APP undergo elongation of their longest neurite. Deletion of APLP1 or APLP2, homologues of APP, likewise stimulates neurite lengthening. Intriguingly, wild-type neurons exposed to APPs-α, the principal cleavage product of APP, also undergo neurite elongation. However, APPs-α is unable to stimulate neurite elongation in the absence of cellular APP expression. The outgrowth-enhancing effects of both APPs-α and the deletion of APP are inhibited by blocking antibodies to Integrin β1 (Itgβ1). Moreover, full length APP interacts biochemically with Itgβ1, and APPs-α can interfere with this binding.
Conclusion
Our findings indicate that APPs-α regulates the function of APP in neurite outgrowth via the novel mechanism of competing with the binding of APP to Itgβ1.
Publisher
Springer Science and Business Media LLC
Subject
Developmental Neuroscience
Cited by
167 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献