Author:
Molina-Hernández Anayansi,Rodríguez-Martínez Griselda,Escobedo-Ávila Itzel,Velasco Iván
Abstract
Abstract
Background
During rat development, histamine (HA) is one of the first neuroactive molecules to appear in the brain, reaching its maximal value at embryonic day 14, a period when neurogenesis of deep layers is occurring in the cerebral cortex, suggesting a role of this amine in neuronal specification. We previously reported, using high-density cerebrocortical neural precursor cultures, that micromolar HA enhanced the effect of fibroblast growth factor (FGF)-2 on proliferation, and that HA increased neuronal differentiation, due to HA type 1 receptor (H1R) activation.
Results
Clonal experiments performed here showed that HA decreased colony size and caused a significant increase in the percentage of clones containing mature neurons through H1R stimulation. In proliferating precursors, we studied whether HA activates G protein-coupled receptors linked to intracellular calcium increases. Neural cells presented an increase in cytoplasmic calcium even in the absence of extracellular calcium, a response mediated by H1R. Since FGF receptors (FGFRs) are known to be key players in cell proliferation and differentiation, we determined whether HA modifies the expression of FGFRs1-4 by using RT-PCR. An important transcriptional increase in FGFR1 was elicited after H1R activation. We also tested whether HA promotes differentiation specifically to neurons with molecular markers of different cortical layers by immunocytochemistry. HA caused significant increases in cells expressing the deep layer neuronal marker FOXP2; this induction of FOXP2-positive neurons elicited by HA was blocked by the H1R antagonist chlorpheniramine in vitro. Finally, we found a notable decrease in FOXP2+ cortical neurons in vivo, when chlorpheniramine was infused in the cerebral ventricles through intrauterine injection.
Conclusion
These results show that HA, by activating H1R, has a neurogenic effect in clonal conditions and suggest that intracellular calcium elevation and transcriptional up-regulation of FGFR1 participate in HA-induced neuronal differentiation to FOXP2 cells in vitro; furthermore, H1R blockade in vivo resulted in decreased cortical FOXP2+ neurons.
Publisher
Springer Science and Business Media LLC
Subject
Developmental Neuroscience
Reference53 articles.
1. Rakic P, Caviness VS: Cortical development: view from neurological mutants two decades later. Neuron. 1995, 14: 1101-1104. 10.1016/0896-6273(95)90258-9.
2. Olson EC, Walsh CA: Smooth, rough and upside-down neocortical development. Curr Opin Genet Dev. 2002, 12: 320-327. 10.1016/S0959-437X(02)00305-2.
3. Ayala R, Shu T, Tsai LH: Trekking across the brain: the journey of neuronal migration. Cell. 2007, 128: 29-43. 10.1016/j.cell.2006.12.021.
4. Costa MR, Hedin-Pereira C: Does cell lineage in the developing cerebral cortex contribute to its columnar organization?. Front Neuroanat. 2010, 4: 26-
5. Meyer G: Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem. J Anat. 2010, 217: 334-343. 10.1111/j.1469-7580.2010.01266.x.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献