Author:
Zahoránszky László A,Katona Gyula Y,Hári Péter,Málnási-Csizmadia András,Zweig Katharina A,Zahoránszky-Köhalmi Gergely
Abstract
Abstract
Background
Hierarchical clustering methods like Ward's method have been used since decades to understand biological and chemical data sets. In order to get a partition of the data set, it is necessary to choose an optimal level of the hierarchy by a so-called level selection algorithm. In 2005, a new kind of hierarchical clustering method was introduced by Palla et al. that differs in two ways from Ward's method: it can be used on data on which no full similarity matrix is defined and it can produce overlapping clusters, i.e., allow for multiple membership of items in clusters. These features are optimal for biological and chemical data sets but until now no level selection algorithm has been published for this method.
Results
In this article we provide a general selection scheme, the level independent clustering selection method, called LInCS. With it, clusters can be selected from any level in quadratic time with respect to the number of clusters. Since hierarchically clustered data is not necessarily associated with a similarity measure, the selection is based on a graph theoretic notion of cohesive clusters. We present results of our method on two data sets, a set of drug like molecules and set of protein-protein interaction (PPI) data. In both cases the method provides a clustering with very good sensitivity and specificity values according to a given reference clustering. Moreover, we can show for the PPI data set that our graph theoretic cohesiveness measure indeed chooses biologically homogeneous clusters and disregards inhomogeneous ones in most cases. We finally discuss how the method can be generalized to other hierarchical clustering methods to allow for a level independent cluster selection.
Conclusion
Using our new cluster selection method together with the method by Palla et al. provides a new interesting clustering mechanism that allows to compute overlapping clusters, which is especially valuable for biological and chemical data sets.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献