Breaking the hierarchy - a new cluster selection mechanism for hierarchical clustering methods

Author:

Zahoránszky László A,Katona Gyula Y,Hári Péter,Málnási-Csizmadia András,Zweig Katharina A,Zahoránszky-Köhalmi Gergely

Abstract

Abstract Background Hierarchical clustering methods like Ward's method have been used since decades to understand biological and chemical data sets. In order to get a partition of the data set, it is necessary to choose an optimal level of the hierarchy by a so-called level selection algorithm. In 2005, a new kind of hierarchical clustering method was introduced by Palla et al. that differs in two ways from Ward's method: it can be used on data on which no full similarity matrix is defined and it can produce overlapping clusters, i.e., allow for multiple membership of items in clusters. These features are optimal for biological and chemical data sets but until now no level selection algorithm has been published for this method. Results In this article we provide a general selection scheme, the level independent clustering selection method, called LInCS. With it, clusters can be selected from any level in quadratic time with respect to the number of clusters. Since hierarchically clustered data is not necessarily associated with a similarity measure, the selection is based on a graph theoretic notion of cohesive clusters. We present results of our method on two data sets, a set of drug like molecules and set of protein-protein interaction (PPI) data. In both cases the method provides a clustering with very good sensitivity and specificity values according to a given reference clustering. Moreover, we can show for the PPI data set that our graph theoretic cohesiveness measure indeed chooses biologically homogeneous clusters and disregards inhomogeneous ones in most cases. We finally discuss how the method can be generalized to other hierarchical clustering methods to allow for a level independent cluster selection. Conclusion Using our new cluster selection method together with the method by Palla et al. provides a new interesting clustering mechanism that allows to compute overlapping clusters, which is especially valuable for biological and chemical data sets.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3