Predicting direct protein interactions from affinity purification mass spectrometry data
-
Published:2010-10-29
Issue:1
Volume:5
Page:
-
ISSN:1748-7188
-
Container-title:Algorithms for Molecular Biology
-
language:en
-
Short-container-title:Algorithms Mol Biol
Author:
Kim Ethan DH,Sabharwal Ashish,Vetta Adrian R,Blanchette Mathieu
Abstract
Abstract
Background
Affinity purification followed by mass spectrometry identification (AP-MS) is an increasingly popular approach to observe protein-protein interactions (PPI) in vivo. One drawback of AP-MS, however, is that it is prone to detecting indirect interactions mixed with direct physical interactions. Therefore, the ability to distinguish direct interactions from indirect ones is of much interest.
Results
We first propose a simple probabilistic model for the interactions captured by AP-MS experiments, under which the problem of separating direct interactions from indirect ones is formulated. Then, given idealized quantitative AP-MS data, we study the problem of identifying the most likely set of direct interactions that produced the observed data. We address this challenging graph theoretical problem by first characterizing signatures that can identify weakly connected nodes as well as dense regions of the network. The rest of the direct PPI network is then inferred using a genetic algorithm.
Our algorithm shows good performance on both simulated and biological networks with very high sensitivity and specificity. Then the algorithm is used to predict direct interactions from a set of AP-MS PPI data from yeast, and its performance is measured against a high-quality interaction dataset.
Conclusions
As the sensitivity of AP-MS pipeline improves, the fraction of indirect interactions detected will also increase, thereby making the ability to distinguish them even more desirable. Despite the simplicity of our model for indirect interactions, our method provides a good performance on the test networks.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology
Reference41 articles.
1. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K, Kuhara S, Sakaki Y: Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. Proceedings of the National Academy of Sciences of the United States of America. 2000, 97 (3): 1143-1147. 10.1073/pnas.97.3.1143 2. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM: A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature. 2000, 403 (6770): 623-627. 10.1038/35001009 3. Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B: A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotech. 1999, 17 (10): 1030-1032. 10.1038/13732 4. Gavin A, Bösche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon A, Cruciat C, Remor M, Höfert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier M, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002, 415 (6868): 141-147. 10.1038/415141a 5. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams S, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sørensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers M: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature. 2002, 415 (6868): 180-183. 10.1038/415180a
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|