Abstract
AbstractAcetaminophen (ACT), an antipyretic analgesic, is one of the emerging pollutants that has been found in high concentrations in domestic and hospital wastewaters. This study compared the adsorption capacity of sugarcane bagasse (SB) and corn cob (CC) for the ACT removal through the dynamic simulation of the adsorption column using Aspen Adsorption® V10. The effects of flow rate (1.5–3.0 mL min− 1), ACT initial concentration (40–80 mg L− 1), and bed height (20–35 cm) on the breakthrough curves were studied. Finally, the simulation results were validated with experimental studies, and analyzed by error functions, sum of squared errors (SSE), absolute average deviation (AAD), and coefficient of determination (R2). Based on the predicted breakthrough curves, ACT is adsorbed in greater quantity on CC, with saturation times and adsorption capacity greater than SB in all simulations. The maximum adsorption capacity was 0.47 and 0.32 mg g− 1 for CC and SB, respectively, under condition of flow rate of 1.5 mL min− 1, bed height of 25 cm, and ACT initial concentration of 80 mg L− 1. Breakthrough and saturation times were higher when the column operated at low flow rates, large bed height, and low ACT concentrations, for both adsorbents. The predicted and experimental breakthrough curves satisfactorily coincided with R2 values greater than 0.97, SSE and AAD values less than 5% and 0.2, respectively, for all studies. The experimental adsorption capacity was greater for CC than for SB, thus confirming that the software is able to predict which adsorbent may be more effective for ACT removal. The results of this study would speed up the search for effective materials to remove ACT from wastewaters.
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference40 articles.
1. Shraim A, Diab A, Alsuhaimi A, Niazy E, Metwally M, Amad M, et al. Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arab J Chem 2017;10:S719–29.
2. Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem Rev 2019;119:3510–673.
3. Kumar R, Tscharke B, O'Brien J, Mueller JF, Wilkins C, Padhye LP. Assessment of drugs of abuse in a wastewater treatment plant with parallel secondary wastewater treatment train. Sci Total Environ 2019;658:947–57.
4. Bexfield LM, Toccalino PL, Belitz K, Foreman WT, Furlong ET. Hormones and pharmaceuticals in groundwater used as a source of drinking water across the United States. Environ Sci Technol 2019;53:2950–60.
5. Pinos Velez VP, Esquivel-Hernandez G, Cipriani-Avila I, Mora-Abril E, Cisneros JF, Alvarado A, et al. Emerging contaminants in trans-American waters. Rev Ambient Água 2019;14:e2436.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献