The performance of Cu2+ as dissolved cathodic electron-shuttle mediator for Cr6+ reduction in the microbial fuel cell

Author:

Gangadharan PraveenaORCID,Nambi Indumathi M.

Abstract

AbstractThe study investigates the performance of Cu2+ as dissolved cathodic electron-shuttle mediator (dcESM) for simultaneous Cr6+ reduction and electricity generation in a microbial fuel cell (MFC) at pH 2 and 4 conditions. The dcESM behavior of Cu2+ on carbon cloth (CC) catalyzes the reduction of Cr6+ into Cr3+ at pH 2 by undergoing redox reactions. However, at pH 4, a simultaneous reduction of Cu2+ and Cr6+ was observed. Cyclic voltammetry studies were performed at pH 2 and 4 to probe the dcESM behavior of Cu2+ for Cr6+ reduction on CC electrode. Also, at pH 2, increasing the concentration of Cu2+ from 50 to 500 mg L− 1 favors the Cr6+ reduction by reducing the reaction time from 108 to 48 h and improving the current production from 3.9 to 6.2 mA m− 2, respectively. Nevertheless, at pH 4, the efficacy of Cr6+ reduction and electricity generation from MFC is decreased from 63 to 18% and 4.4 to 1.1 mA m− 2, respectively, by increasing the Cu2+ concentration from 50 to 500 mg L− 1. Furthermore, the performance of dcESM behavior of Cu2+ was explored on carbon felt (CF) and platinum (Pt) electrodes, and compare the results with CC. In MFC, at pH 2, with an initial concentration of 100 mg L− 1, the reduction of Cr6+ in 60 h is 9.6 mg L− 1 for CC, 0.2 mg L− 1 for CF, and 51.3 mg L− 1 for Pt cathodes. The reduction of Cr6+ (initial concentration of 100 mg L− 1) at pH 4 in 120 h is 44.7 mg L− 1 for CC, 32.1 mg L− 1 for CF, and 70.9 mg L− 1 for Pt cathodes. Maximum power densities of 1659, 1509, and 1284 mW m− 2 were achieved when CF, CC, and Pt, respectively were employed as cathodes in the MFC.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3