Species sensitivity distribution of dichlorvos in surface water species

Author:

Bustos Nahuel JanoORCID,Iriel Analia,Cirelli Alicia Fernández,Cedergreen Nina

Abstract

Abstract Dichlorvos is an organophosphorus insecticide frequently detected in surface waters all around the world. From an evaluation of the environmental quality concentrations (EQC) for dichlorvos in surface waters adopted by different countries, it was observed a wide variability among them. This is despite regulatory EQC-values are typically based on toxicity data and species sensitivity distribution (SSD) in all the investigated regulatory frameworks, and therefore should be similar. Hence, what is the cause of the differences between national and regional EQC-values? And, which ones will protect the aquatic fauna? These hypotheses were proposed to explain differences among SSDs based on the choice of toxicity data: (i) EQC values obtained from technical presentation (pure dichlorvos) will be higher than the estimated from dichlorvos formulation (containing other substances to improve the efficiency of the active principle), as they may include synergists; (ii) different taxa will have different sensitivities; (iii) data produced under different experimental conditions will severely affect the SSD. Regarding their capacity to protect the aquatic fauna the hypotheses were; iv) environmental concentration of dichlorvos represents a risk for aquatic organisms; and v) not all EQC-values are protective for the aquatic fauna. These were tested through a meta-analysis of toxicity data enabling the construction of SSD’s across technical and formulated dichlorvos and species of several taxa, and across literature and experimental data produced under analogous conditions. Finally, the EQC elaborated were compared with a meta-study on monitored environmental concentrations. The study suggested that technical dichlorvos increased toxicity compared to formulated products up to two-fold for arthropods. Species phylogeny affected sensitivity, but the SSD derived values used for setting regulatory concentrations were remarkably robust to the inclusion/exclusion of less sensitive species. The SSD results from the literature and experimental data were similar in the case of technical dichlorvos results. The regional differences in EQC values therefore most likely stem from political considerations on how to use SSDs to derive EQCs rather than from differences in SSDs. The experimental SSD defined a protective concentration of 6.5 ng L− 1 for 5% of the species, which is according to the European EQC, but one to two-fold lower than the limit values of the US, China, and Argentina.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3