Facile synthesis of reduced graphene oxide by Tecoma stans extracts for efficient removal of Ni (II) from water: batch experiments and response surface methodology

Author:

Mahmoud Alaa El DinORCID,Hosny Mohamed,El-Maghrabi Nourhan,Fawzy Manal

Abstract

AbstractA facile approach to synthesize reduced graphene oxide (rGO) was investigated using three different extract concentrations of Tecoma stans leaves as reducing/capping agents. The surface morphology of the rGOs was examined by scanning electron microscopy with energy dispersive X-ray. The optimum prepared rGOs were confirmed with characteristic peaks at ~ 280 nm using UV–Vis Spectroscopy. Fourier-transform infrared spectroscopy results indicated the capacity of plant extracts to reduce the oxygen functional groups on graphite oxides’ surfaces. Furthermore, the organic constituents of the plant extract were determined to highlight the reduction mechanism of graphene oxide to rGO. The optimized rGO was subsequently utilized as an adsorbent for the removal of Ni (II) from simulated wastewater. Adsorption experiments were conducted using methods of one factor at a time as well as Box Behnken Design. The Ni (II) adsorption is fitted well to the non-linear isotherm models and the calculated maximum uptake capacity was 69 mg g− 1. The optimum removal of Ni (II) was found 93% with pH of 6, initial Ni (II) concentration of 2 mg L− 1, and rGO dose of 0.2 g L− 1. The reliability of the developed model was 99.4% between experimental and predicted values. In addition, the average desorption efficiency of Ni (II) was 94%, which highlight the applicability of rGO reusability.

Funder

Science and Technology Development Fund

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3