Author:
Sandoval-Cobo John J.,Casallas-Ojeda Miguel R.,Carabalí-Orejuela Lina,Muñoz-Chávez Anyi,Caicedo-Concha Diana M.,Marmolejo-Rebellón Luis F.,Torres-Lozada Patricia
Abstract
AbstractThe optimization of degradation processes and the management of leachate and biogas produced in landfills are key aspects for the establishment of more sustainable municipal solid waste (MSW) disposal in developing countries. In this study, biochemical methane potential (BMP) tests were used to evaluate CH4 production potential and degradation kinetics of fresh waste (FW) and five-year aged excavated waste (EW) samples from a tropical controlled landfill with compositional characteristics of developing countries. BMP tests with reconstituted samples of the biodegradable fraction of both MSW types were performed at three substrate/inoculum (S/I) ratios (0.3, 0.5 and 1.0 g VS substrate g− 1 VS inoculum), and CH4 generation parameters were determined using the first-order and modified Gompertz kinetic models. After 30-d, the best BMP results were reached at S/I ratios of 0.5 and 1.0, with cumulative CH4 productions of 528 and 433 mL CH4 g− 1 VS for FW, respectively; and 151 and 135 mL CH4 g− 1 VS for EW, respectively. The first-order kinetic model provided a good fit to BMP results for FW, whereas the modified Gompertz model showed a better adjustment to the BMP data for EW. Calculated first-order CH4 generation rates for FW and EW were in the range 0.19–0.36 and 0.23–0.25 d− 1, respectively. These results evidence the high biodegradability and CH4 potential of FW disposed of in a tropical landfill in Colombia and the reduced BMP of EW despite a relatively short period after disposal under conventional landfill operation conditions.
Funder
COLCIENCIAS
Universidad del Valle
Universidad Cooperativa de Colombia
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference44 articles.
1. Themelis NJ, Elena MED, Barriga D, Estevez P, Velasco MG. Guidebook for the application of waste to energy technologies in Latin America and the Caribbean. New York: Columbia University; 2013.
2. Kaza S, Yao LC, Bhada-Tata P, Van Woerden F. What a waste 2.0: a global snapshot of solid waste management to 2050. Washington, DC: World Bank; 2018.
3. UN-HABITAT. Solid Waste Management in the World’s Cities: Water and Sanitation in the World’s Cities 2010. London: United Nations Human Settlements Programme; 2010.
4. DNP. CONPES 3874 Pólítica Nacional para la Gestión Integral de Residuos Sólidos. Bogotá, DC: Departamento Nacional de Planeación; 2016 [in Spanish].
5. Oviedo-Ocana R, Marmolejo-Rebellon L, Torres-Lozada P. Perspective of application of biowaste composting from municipal solid wastes: an approach from global to local. Rev Ing Univ Medellín. 2012;11:67–76 [in Spanish].
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献