Abstract
AbstractThe purification of the primary treated domestic sewage was performed in the present study through the horizontal sub-surface flow constructed wetland (CW) of 10 × 3.5 m dimension. The study was performed using three setups of CW 1 (Unplanted CW), CW 2 (CW planted with macrophyte Typha latifolia), and CW 3 (CW planted with two species of macrophyte T. latifolia and Commelina benghalensis). The purification experiments were performed by converting one type of CW into the other form sequentially, i.e., CW 1 was built first and after the experiments, it was converted into CW 2 and then CW 3. The CW was filled with a layer of coarse and fine gravel of 70 cm depth as filter media in 1:2 ratio. Each set of wetland was operated for 3 months (12 wk) during which the treatment performance of wetlands for basic physicochemical parameters was evaluated. The CW was operated in continuous mode at an average hydraulic loading rate of 250 L h− 1 and the treated effluent was analysed twice every week at four different sampling points having hydraulic retention times (HRT) of 12, 24, 36 and 48 h for important sewage quality parameters All the three setups of CW were able to clean the primary treated sewage significantly. Among the three sets of wetlands used, CW 3 was the best performer removing 79, 77, 79, 79, and 78% of biochemical oxygen demand, chemical oxygen demand, nitrate, ammonia, and phosphate respectively in 48 h HRT. Among the three sets of wetlands, the CW 3 removed the highest percent of total coliforms, fecal coliforms, and E. coli as 64, 61 and 52% respectively.
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference48 articles.
1. Veldkamp TIE, Wada Y, Aerts JCJH, Ward PJ. Towards a global water scarcity risk assessment framework: incorporation of probability distributions and hydro-climatic variability. Environ Res Lett. 2016;11:024006.
2. Wilhite DA, Sivakumar MVK, Pulwarty R. Managing drought risk in a changing climate: the role of national drought policy. Weather Clim Extremes. 2014;3:4–13.
3. Mishra VK, Otter P, Shukla R, Goldmaier A, Alvarez JA, Khalil N, et al. Application of horizontal flow constructed wetland and solar driven disinfection technologies for wastewater treatment in India. Water Pract Technol. 2018;13:469–80.
4. CPCB. Inventorization of Sewage Treatment Plants. Delhi: Central Pollution Control Board; 2015.
5. Kamyotra JS, Bhardwaj RM. Municipal wastewater management in India. In: India infrastructure report 2011. Water: policy and performance for sustainable development. New Delhi: Oxford University Press; 2011. p. 299–311.
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献