Aqueous chemistry of anthropogenically contaminated Bengaluru lakes

Author:

Rao Sudhakar,Mogili Nitish V.,A Priscilla,A Lydia

Abstract

AbstractAnthropogenic activities impact the major ion composition of fresh water sources. The inorganic species are likely to be influenced by mineral dissolution, mineral precipitation, redox and ion-exchange reactions in the contaminated lakes. Owing to paucity of research, this study examines the influence of bio-geochemical reactions on the major ion composition of sewage contaminated Bengaluru lakes. The selected lakes represent water bodies in the major valley systems of the city that are polluted by partly treated sewage and stormwater runoffs. Hydrogeochemical facies of the lake samples showed that enrichment of Mg2+, Na+, Cl and SO42− ions from anthropogenic contamination altered the chemical type of the lake-water. Examination of processes influencing the major ion composition of surface waters indicated that evaporation than rock-weathering tends to influence the chemical composition of the Bengaluru lakes. Precipitation of carbonate minerals in the alkaline pH contributed to the deficiency of alkaline earth ions, while dissolution of anthropogenic gypsum enhanced the SO42− ion concentration of the lakes. Solute diffusion from lake water into the pore solutions of sediments and ion-exchange reactions between monovalent ions of sediments and divalent cations in lake water are additional pathways that influence the major ion composition of the contaminated lakes. Besides alterations in major ion composition, organic contamination, biochemical reactions associated with photosynthesis activity of algae and release of toxic Al3+ ions from mineral dissolution are consequences of the lake contamination.

Funder

Earthwatch Institute India Trust

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3