Inhalation exposure to respirable particulate matter among workers in relation to their e-waste open burning activities in Buriram Province, Thailand

Author:

Bungadaeng Sarasanant,Prueksasit Tassanee,Siriwong Wattasit

Abstract

Abstract The mass concentrations of fine (PM2.5) and coarse (PM2.5–10) particulate matter were determined directly from breathing zones of e-waste dismantling workers during the primitive open burning processes using a Personal Modular Impactor connected to a personal air sampler. The average concentration of PM2.5–10 was 441 ± 496 μg m− 3 (N = 33), and for PM2.5, the average concentration was 2774 ± 4713 μg m− 3 (N = 33). Additionally, the concentrations of PM10, which were the summation of PM2.5 and PM2.5–10 concentrations, had an average concentration of 3215 ± 4858 μg m− 3 (N = 33). The average PM2.5 mass concentrations accounted for 75 ± 18% from those of PM10, suggesting that PM2.5 was the main component of particulate matter that the workers were exposed to during the burning activity. The study also found that increased amounts of burnt e-waste significantly influenced the concentrations of coarse and fine particles emitted. Moreover, the Pearson’s correlation showed a positive relationship between each type of PM mass concentrations and their own total weighted scores of activity patterns. The results indicated that the activity that most increased the exposure concentration of PM2.5 was mixing e-waste on fire. In contrast, the activities that influenced the exposure of PM2.5–10 are mechanical activities, such as compiling and sweeping of e-waste, which are processes that emit and spread larger sizes of particulate matter into the air around the working environment.

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference19 articles.

1. PCD. Thailand state of pollution report 2015. Bangkok: Pollution Control Department; 2016.

2. PCD. Thailand state of pollution report 2014. Bangkok: Pollution Control Department; 2015.

3. Thongkaow P, Prueksasit T, Siriwong W. Material flow of informal electronic waste dismantling in rural area of northeastern Thailand. Osaka: International Conference on Natural Science and Environment; 2017 Dec. p. 8–9.

4. Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, et al. Health consequences of exposure to e-waste: a systematic review. Lancet Glob Health. 2013;1:350–61.

5. Magalini F. Global challenges for e-waste management: the societal implications. Rev Environ Health. 2016;31:137–40.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3