Abstract
AbstractThis study investigated the effect of low and high chemical oxygen demand (COD):N ratios on biological nitrogen removal and microbial distributions in full-scale step-feed (SF) municipal wastewater treatment plants (WWTPs) in Thailand (SF1) and Taiwan (SF2). The SF1 WWTP had a low COD:N (4:1) ratio, a long solids retention time (SRT) (> 60 d), and low dissolved oxygen (DO) conditions (0.2 mg L− 1 in anoxic tank and 0.9 mg L− 1 in aerobic tank). The total nitrogen (TN) removal efficiency was 48%. The SF2 WWTP had a high COD:N (10:1) ratio, a short SRT (7 d), and high DO (0.6 mg L− 1 in anoxic tank and 1.8 mg L− 1 in aerobic tank). The TN removal efficiency was 61%. The nitrification and denitrification rates from these two plants were inadequate. Using a quantitative polymerase chain reaction (qPCR) technique, the populations of ammonium oxidizing bacteria (AOB) and ammonium oxidizing archaea were quantified. Measurement of ammonia monooxygenase (amoA) gene abundances identified these AOB: Nitrosomonas sp., Nitrosospira sp., Nitrosoccus sp. and Zoogloea sp. Higher amounts of the archaeal-amoA gene were found with long SRT, lower DO and COD:N ratios. Abundance of Nitrobacter sp. was slightly higher than Nitrospira sp. at the SF1, while abundance of Nitrobacter sp. was two orders of magnitude greater than Nitrospira sp. at the SF2. More denitrifying bacteria were of the nirS-type than the nirK-type, especially at higher COD:N ratio. Most bacteria belong to the phyla Acidobacteria, Actinobacteria Bacteroidetes, Chloroflexi, Proteobacteria. The results from this work showed that insufficient carbon sources at the SF1 and high DO concentration in anoxic tank of SF2 adversely affected nitrogen removal efficiencies. In further research work, advanced techniques on the next generation sequencing with different variable regions should be recommended in full-scale WWTPs.
Funder
Thailand Science Research and Innovation
Kasetsart University Research and Development Institute
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference28 articles.
1. Peng YZ, Ge SJ. Enhanced nutrient removal in three types of step feeding process from municipal wastewater. Bioresour Technol. 2011;102:6405–13.
2. Riffat R. Fundamentals of wastewater treatment and engineering. London: CRC Press; 2012.
3. The 76th Annual Water Environment Federation Technical Exhibition and Conference. Los Angeles;BR Johnson,2003
4. The 76th Annual Water Environment Federation Technical Exhibition and Conference. Los Angeles;O Amad,2003
5. Tchobanoglous G, Burton FL, Stensel HD. Wastewater engineering: treatment and reuse. 4th Singapore: McGraw-Hill Higher Education; 2004.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献