Techno-economic evaluation of electrocoagulation for cattle slaughterhouse wastewater treatment using aluminum electrodes in batch and continuous experiment

Author:

Hellal Mohamed SaadORCID,Doma Hala Salah,Abou-Taleb Enas Mohamed

Abstract

AbstractThis study aimed to investigate, from a techno-economic point of view, cattle slaughterhouse wastewater (CSWW) treatment via the electrocoagulation (EC) technique. A novel lab-scale EC unit with a 3 L volume was manufactured and tested. The EC unit contains nine identical cylindrical shape electrodes from aluminum material in connection with a controllable DC power supply. Investigation of optimum operating parameters in terms of pH, current density (CD), contact time, and electrolyte concentration was carried out in batch mode and then applied to continuous mode. At each batch, a cost analysis was calculated in terms of the consumption of electrode material and electrical power. The optimum operating conditions at which the best removal efficiency was achieved were pH 7, contact time 75 min, total dissolved solids of 3000 mg L−1, and CD of 4 mA cm−2. After application of these conditions on continuous flow mode, the removal efficiency of chemical oxygen demand, color, turbidity, biological oxygen demand, and oil, grease were 95, 99, 99, 97 and 95%, respectively. The total electrode consumption and electrical consumptions were 0.6 kg m−3and 0.87 kWh m−3with an operational cost of about $1.5 m−3. This proved that EC is a techno-economically effective treatment method than other conventional treatment methods for high-rate removal of pollutants from CSWW.

Funder

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3