Abstract
AbstractRare earth elements (REE) are essential for the production of technological devices. However, their high demand and low availability, together with an increase in electronic waste generation, compel the development of efficient, economic and green methods for recovering these elements from electronic waste. In this work, a facile method for selective recovering of REE from Liquid Crystal Display (LCD) screen wastes, employing ultrasound assisted leaching is presented. The screen wastes were milled and sieved to pass through a − 325 mesh sieve (44 μm). The milled powder was subjected to ultrasound-assisted leaching in an aqueous medium, at room temperature (25 °C) and pH 6 for 60 min. Subsequently, a magnetic separation was applied to the leach residue. Inductively coupled plasma was employed to quantitatively analyze the composition of the LCD powders and determine the effectiveness of the extraction process. Scanning Electron Microscopy/Energy Dispersive X-Ray Spectroscopy allowed qualitative chemical analysis of the solid materials. The results show that the LCD screen wastes are formed, mainly, by amorphous oxides of Si, Fe, In, Sn and REE. The amount of Gadolinium (Gd) and Praseodymium (Pr) in the wastes were 93 and 24 mg kg− 1, respectively, which justifies their recovery. X-ray diffraction analysis of the magnetic portion of the leached residue, confirmed the presence of an amorphous phase together with crystalline metallic iron alloy. The magnetic behavior, obtained by Vibration Sample Magnetometry, helped to understand the nature of the residues. The formation of this metallic alloy is attributed to the effect of high power ultrasonic during the leach. It was confirmed that the magnetic residue concentrates and recovers 87 wt% of Gd and 85 wt% of Pr contained in the original material. Therefore, ultrasound-assisted leaching is a selective and facile method for recovering Gd and Pr from waste LCD.
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference36 articles.
1. Sethurajan M, van Hullebusch ED, Fontana D, Akcil A, Deveci H, Batinic B, et al. Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes – a review. Crit Rev Env Sci Tec. 2019;49:212–275.
2. Kumar A, Holuszko M, Espinosa DCR. E-waste: an overview on generation, collection, legislation and recycling practices. Resour Conserv Recy. 2017;122:32–42.
3. Balde CP, Forti V, Gray V, Kuehr R, Stegmann P. United Nations University (UNU). The Global E-waste Monitor. Bonn, Geneva, Vienna: United Nations University, International Telecommunication Union, International Solid Waste Association; 2017.
4. Zhang LG, Chen Y, Xu ZM. Controllable formation of carbon fiber in pyrolysis process of liquid crystals from waste LCD panels and indium recovery by vacuum in situ reduction with carbon fiber. ACS Sustain Chem Eng. 2018;6:541–50.
5. Kanari N, Allain E, Shallari S, Diot F, Diliberto S, Patisson F, et al. Thermochemical route for extraction and recycling of critical, strategic and high value elements from by-products and end-of-life materials, Part I: treatment of a copper by-product in air atmosphere. Materials. 2019;12:1625.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献