Abstract
AbstractAs an environmentally friendly energy recovery technology, microwave pyrolysis has huge development potential in sludge resource treatment. This paper comprehensively reviews the progress of microwave pyrolysis of sludge, focusing on the mechanisms and development status of microwave pyrolysis equipment. The effects of pyrolysis temperature, heating rate, microwave absorbers, sludge properties and catalysts on microwave pyrolysis efficiency and its products are also discussed. Finally, the differentiation compared with conventional pyrolysis is summarized. It is suggested that target products can be controlled directionally by changing the pyrolysis conditions and exploring the harmful products produced in the microwave pyrolysis process. Future research directions are proposed to help the subsequent extensive application of microwave pyrolysis technology in sludge treatment.
Funder
State Key Laboratory of Petroleum Pollution Control of China
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference49 articles.
1. Jiang YY, Wang Y, Duan WY, Zuo N, Chen FY. Migration and environmental effects of heavy metals in the pyrolysis of municipal sludge. Huan Jing Ke Xue 2021;42:2966–74 [in Chinese].
2. Gao NB, Jia XY, Gao GQ, Ma ZZ, Quan C, Naqvi SR. Modeling and simulation of coupled pyrolysis and gasification of oily sludge in a rotary kiln. Fuel 2020;279:118152.
3. Gao NB, Li JQ, Quan C, Tan HZ. Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive. Fuel 2020;266:117090.
4. Callegari A, Hlavinek P, Capodaglio AG. Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge. Rev Ambient Água 2018;13:e2128.
5. Capodaglio AG, Callegari A. Feedstock and process influence on biodiesel produced from waste sewage sludge. J Environ Manage 2018;216:176–82.
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献