Abstract
AbstractCarbon capture, utilization, and storage (CCUS) technologies are being developed to address the increasing CO2 emissions, mitigating the global warming and climate change. In this context, chemical precipitation has been advanced to enhance the performance, energy-efficiency and profitability of CCUS. In this review, we first present the fundamentals of precipitation and dissolution, and then summarize the incorporation of precipitation in each aspect of CCUS. The controlled precipitation of CO2-rich solid during the capture of CO2 by regenerable solvents can reduce the energy demand. The mineral carbonation of silicate and industrial waste sequestrates CO2 as stable solids. The efficiency of mineral carbonation, either direct or indirect, is dictated by the dissolution of minerals and the precipitation of carbonates and silica. The precipitation of calcium carbonate can be controlled to produce various polymorphs and morphology, enabling its utilization for the enhancement of profitability and environmental benefits. Ultimately, the prospective for future research was proposed.
Funder
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Reference129 articles.
1. Ozkan M, Nayak SP, Ruiz AD, Jiang W. Current status and pillars of direct air capture technologies. iScience. 2022;25:103990.
2. USEIA. International Energy Outlook 2021. Washington, DC: US Energy Information Administration; 2021.
3. IPCC. Summary for Policymakers. In: Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: World Meteorological Organization; 2018. p. 32.
4. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, et al. Carbon capture and storage update. Energ Environ Sci. 2014;7:130–89.
5. Li B, Duan Y, Luebke D, Morreale B. Advances in CO2 capture technology: A patent review. Appl Energ. 2013;102:1439–47.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献