Abstract
AbstractThe commonly used benzophenone-3 (BP-3) as ultraviolet filter ingredients is an endocrine-disrupting chemical that has received particular attention owing to its environmental ubiquity, and it poses a threat to aquatic biota and human health. In this study, novel α-Bi2O3@g-C3N4 nanocomposites with different α-Bi2O3 contents and enhanced photocatalytic activity were synthesized by a mixing calcination method. The as-synthesized photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet–visible diffuse reflectance spectroscopy, N2 adsorption/desorption isotherm analysis, electrochemical impedance spectroscopy, photoluminescence spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The 1 wt% α-Bi2O3@g-C3N4 composite exhibited the highest rate constant of 0.42 h-1 for photocatalytic degradation of BP-3, which was up to 6.3 times higher than that of g-C3N4 (0.07 h-1). The enhanced photocatalytic activity might be due to the enhanced separation of photogenerated electron-hole (e--h+) charge pairs and suppression of e--h+ recombination. Scavenging experiments suggested that •OH, h+ and •O2- worked together in the α-Bi2O3@g-C3N4 photocatalytic process. The EPR spectra demonstrated that the α-Bi2O3@g-C3N4 composites generated considerably more •O2- and •OH than g-C3N4. Finally, cyclic degradation experiments showed the reusability of 1 wt% α-Bi2O3@g-C3N4 for BP-3 removal.
Funder
ministry of science and technology, taiwan
Publisher
Springer Science and Business Media LLC
Subject
Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献