Recycling disposable bamboo chopstick waste as a renewable energy resource: Case study in Khon Kaen University, Thailand

Author:

Jodnok Supin,Choeisai PairayaORCID,Kruehong Chaiyaput,Choeisai Krit

Abstract

AbstractThis study focused on elucidating disposable bamboo chopstick (DBC) waste generation rate and identifying the appropriate carbonization temperature for recycling DBC waste as a renewable energy resource. A survey was conducted within the study area of Khon Kaen University (KKU). Of the student population of approximately 40,000, the questionnaire was completed by 470 students. The survey revealed a bamboo chopstick utilization rate equivalent to 0.46 pairs person− 1 d− 1. A carbonization process wit 1-h was carried out at 650 and at 900 °C to compare the quality of charcoal recycled from DBC (DBC charcoal). The DBC charcoal prepared at 650 °C was of a higher quality for use as fuel compared to 900 °C prepared DBC charcoal; with 5.3 times higher BET surface area (62 × 103 m2 kg− 1), 5% higher thermal efficiency (31%), 15 times higher hydrogen (H) content (1.9% of total mass content), and 1.0 MJ kg− 1 higher heating values by bombs calorimeter (32.8 MJ kg− 1). The utilization of DBC charcoal as the biomass fuel in gasification for electricity generation could produce 0.0395% of KKU consumption energy which was estimated to reduce CO2 emission by 12.9 t CO2 yr− 1 as well as waste generation at 43.7 t yr− 1 or 0.399% around KKU area.

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference16 articles.

1. Luo C. China’s 80 billion disposable chopsticks a burden on forests. Hong Kong: South China Morning Post; 2013.

2. Chen DY, Zhou JB, Zhang QS. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo. Bioresour Technol 2014;169:313–9.

3. Mingjie G. Manual for bamboo charcoal production and utilization. Nanjing: East Nanjing Forestry University; 2004.

4. Basu P. Biomass gasification and pyrolysis: practical design. Burlington: Academic Press; 2010.

5. FAO. Using charcoal efficiently. In: Simple technologies for charcoal making. Rome: Food and Agriculture Organization; 1983.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3