Physicochemical, microbiological characterization and phytotoxicity of digestates produced on single-stage and two-stage anaerobic digestion of food waste

Author:

Parra-Orobio Brayan AlexisORCID,Rotavisky-Sinisterra María Paula,Pérez-Vidal Andrea,Marmolejo-Rebellón Luis Fernando,Torres-Lozada Patricia

Abstract

AbstractOrganic amendments favor the development of sustainable agriculture by using less chemical fertilizers. In this way, the use of digestates from anaerobic digestion as soil conditioners in agriculture has been gaining interest due to their important N and P nutrient contents, among others. This study evaluated the potential use of digestates from anaerobic reactors treating food waste in single (D1) and two-stages (D2: hydrolytic/acidogenic and D3: acetogenic/methanogenic) configurations. Digestate characteristics and their potential application conditions (100, 50, 25, and 5%) were evaluated using Raphanus sativus as an indicator species. D3 reported the best performance in terms of: (i) better physicochemical, microbiological, and parasitological characteristics, being a class B material, without exceeding the established limits for heavy metals, fecal coliforms (FC <  1000 CFU 100 mL− 1), Salmonella spp. (0 CFU g− 1), and viable helminth eggs (0 HE g− 1); (ii) better stability indicators on D3, followed by D1 (volatile solids/total solids (VS/TS): 0.57 and 0.65, pH: 8.63 and 6.80, respectively), while D2 was the most unstable digestate (VS/TS > 0.87 and acidic pH); and (iii) greater potential for agricultural use, since a 5% dose produced a germination index > 120%, whose effect is associated with the presence of humic and fulvic acids and with N and P concentrations > 1%. In addition, the study reported that volatile fatty acids > 2500 mg L− 1 act as antimicrobial agents, reducing the required pathogen removal pretreatments.

Funder

Universidad del Valle

Universidad Santiago de Cali

Publisher

Springer Science and Business Media LLC

Subject

Pollution,Waste Management and Disposal,Water Science and Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3