Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries

Author:

Mei May Lei,Li Quan-li,Chu Chun-Hung,Lo EdwardChin-Man,Samaranayake Lakshman Perera

Abstract

Abstract Backgrounds Silver diamine fluoride (SDF) has clinical success in arresting dentin caries, this study aimed to investigate its mechanism of action. Methods Using a computer-controlled artificial mouth, we studied the effect of 38% SDF on cariogenic biofilms and dentin carious lesions. We used five common cariogenic bacteria (Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, Lactobacillus rhamnosus and Actinomyces naeslundii) to form a cariogenic biofilm that generated carious lesions with a depth of approximately 70 um on human dentin blocks. We applied 38% SDF to the lesions in the test group and water to those in the control group. The blocks were incubated in the artificial mouth for 21 days before evaluation. Microbial kinetics, architecture, viability and distribution were evaluated every 7 days using colony forming unit (CFU), scanning electron microscopy and confocal laser scanning microscopy. The physical properties of the carious lesions were evaluated with microhardness testing, energy dispersive spectroscopy (EDS) and Fourier transform infra-red spectroscopy (FTIR). Results The CFU results revealed fewer colony forming units in the test group compared with the control group (p < 0.01). Scanning electron microscopy and confocal microscopy showed less bacterial growth in the test group, and confluent cariogenic biofilm in the control group (p < 0.01). The microhardness and weight percentages of calcium and phosphorus in the test group from the outermost 50mum were higher than in the control group (p < 0.05). EDS showed that calcium and phosphous were higher in outer 50 mum in test groups than in the control FTIR revealed less exposed collagen I in the test lesions compared with the control group (p < 0.01). Conclusions 38% SDF inhibits multi-species cariogenic biofilm formation on dentin carious lesions and reduces the demineralization process.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Microbiology (medical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3