Antimicrobial activity and mechanism of action of Nu-3, a protonated modified nucleotide

Author:

Cao Shanping,Sun Lun-Quan,Wang Ming

Abstract

Abstract Background "Nubiotics" are synthetic oligonucleotides and nucleotides with nuclease-resistant backbones, and are fully protonated for enhanced ability to be taken up by bacterial cells. Nu-3 [butyl-phosphate-5'-thymidine-3'-phosphate-butyl], one of the family members of Nubiotics was efficacious in the treatment of burn-wound infections by Pseudomonas aeruginosa in mice. Subsequent studies revealed that Nu-3 had a favorable toxicological profile for use as a pharmaceutical agent. This study evaluated the antibacterial activity of Nu-3 in vitro and its efficacy as a topical antibiotic. In addition, we investigated the possible mechanisms of Nu-3 action at the levels of DNA synthesis and bacterial membrane changes. Methods Antimicrobial minimum inhibitory concentrations (MIC) experiments with Nu-3 and controls were measured against a range of Gram-positive and Gram-negative bacteria, including some hospital isolates according to Clinical and Laboratory Standards Institute (CLSI) guidelines. Analysis of the killing kinetics of Nu-3 was also performed against two strains (Staphylococcus aureus cvcc 2248 and Pseudomonas aeruginosa cvcc 5668). The mouse skin suture-wound infection model was used to evaluate the antibacterial activity of Nu-3. We used a 5-Bromo-2'-deoxy-uridine Labeling and Detection Kit III (Roche, Switzerland) to analyze DNA replication in bacteria according to the manufacturer's instruction. The BacLight™ Bacterial Membrane Potential Kit (Invitrogen) was used to measure the bacterial membrane potential in S. aureus. Results Nu-3 had a wide antibacterial spectrum to Gram-positive, Gram-negative and some resistant bacteria. The MIC values of Nu-3 against all tested MRSA and MSSA were roughly in a same range while MICs of Oxacillin and Vancomycin varied between the bacteria tested. In the mouse model of skin wound infection study, the treatment with 5% Nu-3 glycerine solution also showed comparable therapeutic effects to Ciprofloxacin Hydrochloride Ointment. While Nu-3 had no effect on DNA synthesis of the tested bacteria as demonstrated in a BrdU assay, it could cause bacterial cell membrane depolarization, as measured using a BacLight™ Bacterial Membrane Potential Kit. Conclusions These results provide additional experimental data that are consistent with the hypothesis that Nu-3 represents a new class of antibacterial agents for treating topical infections and acts via a different mechanism from conventional antibiotics.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases,Microbiology (medical),General Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3