Topographical distribution of blubber in finless porpoises (Neophocaena asiaeorientalis sunameri): a result from adapting to living in coastal waters

Author:

Zeng Xianyuan,Ji Junhua,Hao Yujiang,Wang Ding

Abstract

Abstract Background Blubber has many functions, among which energy storage, thermoregulation, buoyancy, and hydrodynamic streamlining are the most frequently cited. Within and between taxa, variations in its structure and distribution likely reflect different adaptations of a species to its life history requirements, environment, health, and function. Here, we use ultrasound to describe the distribution of blubber in the finless porpoise (Neophocaena asiaeorientalis sunameri) based on examinations of 34 fresh cadavers recovered as accidental fisheries bycatch. Results Measurements of blubber depth determined by ultrasound positively correlated with conventional measurements using a scalpel and calipers. Whereas conventional surgical incision and visual examination revealed two layers of blubber, ultrasound revealed up to three layers; thus, ultrasound reveals additional structural detail in blubber while crude necropsy techniques do not. Across life history categories, ultrasound revealed the distribution of inner blubber to be topographically consistent with that of full-depth blubber. Blubber in the dorsal region was stratified into three layers and was significantly thicker than that in the lateral and ventral regions, in which a middle layer was normally absent. Conclusions Ultrasound provides a fast, effective, and accurate means to determine blubber thickness and structure, and thus, assessment of the health of fresh finless porpoise carcasses. Blubber depth is determined largely by the thickness of the inner and middle layers, wherein lipids are concentrated. The thickening of blubber in the dorsal thoracic-abdominal region suggests multiple roles of thermal insulation, lipid storage, and, we speculate, to facilitate vertical stability in the complex shallow and estuarine waters in which this animal absent of a dorsal fin occurs.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3