Establishment of a microsatellite set for noninvasive paternity testing in free-ranging Macaca mulatta tcheliensis in Mount Taihangshan area, Jiyuan, China

Author:

Wang Bai-Shi,Wang Zhen-Long,Tian Jun-Dong,Cui Zhen-Wei,Lu Ji-Qi

Abstract

Abstract Background Within multi-male and multi-female mammalian societies, paternity assignment is crucial for evaluating male reproductive success, dominance hierarchy, and inbreeding avoidance. It is, however, difficult to determine paternity because of female promiscuity during reproduction. Noninvasive molecular techniques (e.g., fecal DNA) make it possible to match the genetic father to his offspring. In the current study, a troop of free-ranging Taihangshan macaques (Macaca mulatta tcheliensis) in Mt. Taihangshan area, Jiyuan, China, was selected for studying the paternity. We successfully screened a set of microsatellite loci from fecal DNA and evaluated the efficiency of these loci for paternity testing using clearly recorded data of maternity. Results The results showed that: 1) ten loci out of 18 candidate microsatellite loci were amplified successfully in the fecal samples of Taihangshan macaques. The error probability in maternity assignments and paternity testing was very low as indicated by their power of discrimination (0.70 to 0.95), power of exclusion (0.43 to 0.84), and the values of polymorphic information content ranging from 0.52 to 0.82; 2) the combined probability of exclusion in paternity testing for ten qualified loci was as high as 99.999%, and the combined probability of exclusion reached 99.99% when the seven most polymorphic loci were adopted; 3) the offspring were assigned to their biological mother correctly and also matched with their genetic father. Conclusions We concluded that the ten polymorphic microsatellite loci, especially a core set of seven most polymorphic loci, provided an effective and reliable tool for noninvasive paternity testing in free-ranging rhesus macaques.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3