Author:
Chou Chang-En,Liao Te-Yu,Chang Hsueh-Wen,Chang Shui-Kai
Abstract
Abstract
Background
Hirundichthys oxycephalus is an important flyingfish resource in eastern Taiwan and northwestern Japan. A substantial catch decline in Taiwan has caused serious concerns on stock status of the fish, prompting the government to impose a set of regulations on flyingfish egg fishery since 2008. However, the regulations were set in a precautionary manner, without considering the fundamental understanding of the population genetic structure. This study aims to investigate the population genetic structure of H. oxycephalus in the region based on mtDNA cytochrome oxidase I (COI) gene and to thus provide scientific information for sustainable management of the resource.
Results
Tissue samples (156) from six localities of eastern Taiwan and western Japan were collected, and 616 bp of mtDNA COI gene were sequenced. Seventy haplotypes were determined, and the haplotype diversity and nucleotide diversity were estimated as 0.93% and 0.57%, respectively. Results of various statistical analyses suggested that the genetic differentiations among the six localities were small and most variation occurred within populations, indicating a high gene flow in the region with undergoing population expansion. Although the study showed that the fishes were genetically divided into two groups, the support was low and the separation was not geologically evident.
Conclusions
The study revealed two groups of H. oxycephalus in the northwestern Pacific Ocean. However, due to high gene flow, an association of either group to a spatial distribution was not observed, and so the two groups may be considered as one population. Thus, the results favored the conclusion that H. oxycephalus from eastern Taiwan and western Japan belong to the same population and, consequently, that the management unit of the current regulations only covering eastern Taiwan does not match the spatial structure of the population. Rather, the results suggest that joint efforts from countries within the population boundary are necessary to maintain a sustainable exploitation.
Publisher
Springer Science and Business Media LLC
Subject
Animal Science and Zoology
Reference77 articles.
1. Abdul-Muneer PM (2014) Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int 2014:11, doi:10.1155/2014/691759
2. Bentzen P (1998) Seeking evidence of local stock structure using molecular genetic methods. In: Herbing IH, Kornfield I, Tupper M, Wilson J (eds) The implications of localized fisheries stocks. Regional Agricultural Engineering Service, New York, pp 20–30
3. Bermingham E, McCafferty SS, Martin PP (1997) Fish biogeography and molecular clocks: perspectives from the Panamian Isthmus. In: Stepien CA (ed) Kocher TD. Molecular Systematics of Fishes, San Diego, pp 113–228
4. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74(1):21–45
5. Chang CW, Lin CH, Chen YS, Chen MH, Chang SK (2012a) Age validation, growth estimation and cohort dynamics of the bony flying fish Hirundichthys oxycephalus off eastern Taiwan. Aquat Biol 15(3):251–260, doi:10.3354/ab00425
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献