Population structure of Hirundichthys oxycephalus in the northwestern Pacific inferred from mitochondrial cytochrome oxidase I gene

Author:

Chou Chang-En,Liao Te-Yu,Chang Hsueh-Wen,Chang Shui-Kai

Abstract

Abstract Background Hirundichthys oxycephalus is an important flyingfish resource in eastern Taiwan and northwestern Japan. A substantial catch decline in Taiwan has caused serious concerns on stock status of the fish, prompting the government to impose a set of regulations on flyingfish egg fishery since 2008. However, the regulations were set in a precautionary manner, without considering the fundamental understanding of the population genetic structure. This study aims to investigate the population genetic structure of H. oxycephalus in the region based on mtDNA cytochrome oxidase I (COI) gene and to thus provide scientific information for sustainable management of the resource. Results Tissue samples (156) from six localities of eastern Taiwan and western Japan were collected, and 616 bp of mtDNA COI gene were sequenced. Seventy haplotypes were determined, and the haplotype diversity and nucleotide diversity were estimated as 0.93% and 0.57%, respectively. Results of various statistical analyses suggested that the genetic differentiations among the six localities were small and most variation occurred within populations, indicating a high gene flow in the region with undergoing population expansion. Although the study showed that the fishes were genetically divided into two groups, the support was low and the separation was not geologically evident. Conclusions The study revealed two groups of H. oxycephalus in the northwestern Pacific Ocean. However, due to high gene flow, an association of either group to a spatial distribution was not observed, and so the two groups may be considered as one population. Thus, the results favored the conclusion that H. oxycephalus from eastern Taiwan and western Japan belong to the same population and, consequently, that the management unit of the current regulations only covering eastern Taiwan does not match the spatial structure of the population. Rather, the results suggest that joint efforts from countries within the population boundary are necessary to maintain a sustainable exploitation.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology

Reference77 articles.

1. Abdul-Muneer PM (2014) Application of microsatellite markers in conservation genetics and fisheries management: recent advances in population structure analysis and conservation strategies. Genet Res Int 2014:11, doi:10.1155/2014/691759

2. Bentzen P (1998) Seeking evidence of local stock structure using molecular genetic methods. In: Herbing IH, Kornfield I, Tupper M, Wilson J (eds) The implications of localized fisheries stocks. Regional Agricultural Engineering Service, New York, pp 20–30

3. Bermingham E, McCafferty SS, Martin PP (1997) Fish biogeography and molecular clocks: perspectives from the Panamian Isthmus. In: Stepien CA (ed) Kocher TD. Molecular Systematics of Fishes, San Diego, pp 113–228

4. Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74(1):21–45

5. Chang CW, Lin CH, Chen YS, Chen MH, Chang SK (2012a) Age validation, growth estimation and cohort dynamics of the bony flying fish Hirundichthys oxycephalus off eastern Taiwan. Aquat Biol 15(3):251–260, doi:10.3354/ab00425

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3