Genomic organization and phylogenetic utility of deer mouse (Peromyscus maniculatus) lymphotoxin-alpha and lymphotoxin-beta

Author:

Richens Tiffany,Palmer Aparna D~N,Prescott Joseph,Schountz Tony

Abstract

Abstract Background Deer mice (Peromyscus maniculatus) are among the most common mammals in North America and are important reservoirs of several human pathogens, including Sin Nombre hantavirus (SNV). SNV can establish a life-long apathogenic infection in deer mice, which can shed virus in excrement for transmission to humans. Patients that die from hantavirus cardiopulmonary syndrome (HCPS) have been found to express several proinflammatory cytokines, including lymphotoxin (LT), in the lungs. It is thought that these cytokines contribute to the pathogenesis of HCPS. LT is not expressed by virus-specific CD4+ T cells from infected deer mice, suggesting a limited role for this pathway in reservoir responses to hantaviruses. Results We have cloned the genes encoding deer mouse LTα and LTβ and have found them to be highly similar to orthologous rodent sequences but with some differences in promoters elements. The phylogenetic analyses performed on the LTα, LTβ, and combined data sets yielded a strongly-supported sister-group relationship between the two murines (the house mouse and the rat). The deer mouse, a sigmodontine, appeared as the sister group to the murine clade in all of the analyses. High bootstrap values characterized the grouping of murids. Conclusion No conspicuous differences compared to other species are present in the predicted amino acid sequences of LTα or LTβ; however, some promoter differences were noted in LTβ. Although more extensive taxonomic sampling is required to confirm the results of our analyses, the preliminary findings indicate that both genes (analyzed both separately and in combination) hold potential for resolving relationships among rodents and other mammals at the subfamily level.

Publisher

Springer Science and Business Media LLC

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3