Author:
Ford Andrew Q,Dasgupta Preeta,Mikhailenko Irina,Smith Elizabeth MP,Noben-Trauth Nancy,Keegan Achsah D
Abstract
Abstract
Background
The IL-4 receptor α (IL-4Rα) chain has a broad expression pattern and participates in IL-4 and IL-13 signaling, allowing it to influence several pathological components of allergic lung inflammation. We previously reported that IL-4Rα expression on both bone marrow-derived and non-bone marrow-derived cells contributed to the severity of allergic lung inflammation. There was a correlation between the number of macrophages expressing the IL-4Rα, CD11b, and IAd, and the degree of eosinophilia in ovalbumin challenged mice. The engagement of the IL-4Rα by IL-4 or IL-13 is able to stimulate the alternative activation of macrophages (AAM). The presence of AAM has been correlated with inflammatory responses to parasites and allergens. Therefore, we hypothesized that IL-4Rα+ AAM play an active role in allergic lung inflammation. To directly determine the role of AAM in allergic lung inflammation, M-CSF-dependent macrophages (BMM) were prepared from the bone-marrow of IL-4Rα positive and negative mice and transferred to IL-4RαxRAG2-/- mice. Wild type TH2 cells were provided exogenously.
Results
Mice receiving IL-4Rα+/+ BMM showed a marked increase in the recruitment of eosinophils to the lung after challenge with ovalbumin as compared to mice receiving IL-4Rα-/- BMM. As expected, the eosinophilic inflammation was dependent on the presence of TH2 cells. Furthermore, we observed an increase in cells expressing F4/80 and Mac3, and the AAM marker YM1/2 in the lungs of mice receiving IL-4Rα+/+ BMM. The BAL fluid from these mice contained elevated levels of eotaxin-1, RANTES, and CCL2.
Conclusions
These results demonstrate that transfer of IL-4Rα + macrophages is sufficient to enhance TH2-driven, allergic inflammation. They further show that stimulation of macrophages through IL-4Rα leads to their alternative activation and positive contribution to the TH2-driven allergic inflammatory response in the lung. Since an increase in AAM and their products has been observed in patients with asthma exacerbations, these results suggest that AAM may be targeted to alleviate exacerbations.
Publisher
Springer Science and Business Media LLC
Reference67 articles.
1. Holt PG, Cacaubas C, Stumbles PA, Sly PD: The role of allergy in the development of asthma. Nature supplement. 1999, 402: B12-B17.
2. Busse WW, Rosenwasser LJ: Mechanisms of asthma. J Allergy Clin Immunol. 2003, 111: 5799-5804.
3. Holgate ST, Davies DE: 2009. Rethinking the pathogenesis of asthma. Immunity. 2009, 31: 362-367.
4. Kuperman D, Schofield B, Wills-Karp M, Grusby MJ: STAT6-deficient mice are protected from antigen-induced airway hyperresponsiveness and mucus production. J Exp Med. 1998, 187: 939-945.
5. Corry DB, Grunig G, Hadeiba H, Kurup VP, Warnock ML, Sheppard D, Rennick DM, Locksley RM: Requirements for allergen-induced airway hyperreactivity in T and B cell-deficient mice. Mol Med. 1998, 4: 344-355.
Cited by
74 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献