High glucose concentrations induce TNF-α production through the down-regulation of CD33 in primary human monocytes

Author:

Gonzalez Yolanda,Herrera M Teresa,Soldevila Gloria,Garcia-Garcia Lourdes,Fabián Guadalupe,Pérez-Armendariz E Martha,Bobadilla Karen,Guzmán-Beltrán Silvia,Sada Eduardo,Torres Martha

Abstract

Abstract Background CD33 is a membrane receptor containing a lectin domain and a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) that is able to inhibit cytokine production. CD33 is expressed by monocytes, and reduced expression of CD33 correlates with augmented production of inflammatory cytokines, such as IL-1β, TNF-α, and IL-8. However, the role of CD33 in the inflammation associated with hyperglycemia and diabetes is unknown. Therefore, we studied CD33 expression and inflammatory cytokine secretion in freshly isolated monocytes from patients with type 2 diabetes. To evaluate the effects of hyperglycemia, monocytes from healthy donors were cultured with different glucose concentrations (15-50 mmol/l D-glucose), and CD33 expression and inflammatory cytokine production were assessed. The expression of suppressor of cytokine signaling protein-3 (SOCS-3) and the generation of reactive oxygen species (ROS) were also evaluated to address the cellular mechanisms involved in the down-regulation of CD33. Results CD33 expression was significantly decreased in monocytes from patients with type 2 diabetes, and higher levels of TNF-α, IL-8 and IL-12p70 were detected in the plasma of patients compared to healthy donors. Under high glucose conditions, CD33 protein and mRNA expression was significantly decreased, whereas spontaneous TNF-α secretion and SOCS-3 mRNA expression were increased in monocytes from healthy donors. Furthermore, the down-regulation of CD33 and increase in TNF-α production were prevented when monocytes were treated with the antioxidant α-tocopherol and cultured under high glucose conditions. Conclusion Our results suggest that hyperglycemia down-regulates CD33 expression and triggers the spontaneous secretion of TNF-α by peripheral monocytes. This phenomenon involves the generation of ROS and the up-regulation of SOCS-3. These observations support the importance of blood glucose control for maintaining innate immune function and suggest the participation of CD33 in the inflammatory profile associated with type 2 diabetes.

Publisher

Springer Science and Business Media LLC

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3