CD8α is expressed by human monocytes and enhances FcγR-dependent responses

Author:

Gibbings Derrick J,Marcet-Palacios Marcelo,Sekar Yokananth,Ng Marcus CY,Befus A Dean

Abstract

Abstract Background CD8α enhances the responses of antigen-specific CTL activated through TCR through binding MHC class I, favoring lipid raft partitioning of TCR, and inducing intracellular signaling. CD8α is also found on dendritic cells and rat macrophages, but whether CD8α enhances responses of a partner receptor, like TCR, to activate these cells is not known. TCR and FcR, use analogous or occasionally interchangeable signaling mechanisms suggesting the possibility that CD8α co-activates FcR responses. Interestingly, CD8α+ monocytes are often associated with rat models of disease involving immune-complex deposition and FcR-mediated pathology, such as arthritis, glomerulonephritis, ischaemia, and tumors. While rat macrophages have been shown to express CD8α evidence for CD8α expression by mouse or human monocytes or macrophages was incomplete. Results We detected CD8α, but not CD8β on human monocytes and the monocytic cell line THP-1 by flow cytometry. Reactivity of anti-CD8α mAb with monocytes is at least partly independent of FcR as anti-CD8α mAb detect CD8α by western blot and inhibit binding of MHC class I tetramers. CD8α mRNA is also found in monocytes and THP-1 suggesting CD8α is synthesized by monocytes and not acquired from other CD8α+ cell types. Interestingly, CD8α from monocytes and blood T cells presented distinguishable patterns by 2-D electrophoresis. Anti-CD8α mAb alone did not activate monocyte TNF release. In comparison, TNF release by human monocytes stimulated in a FcR-dependent manner with immune-complexes was enhanced by inclusion of anti-CD8α mAb in immune-complexes. Conclusion Human monocytes express CD8α. Co-engagement of CD8α and FcR enhances monocyte TNF release, suggesting FcR may be a novel partner receptor for CD8α on innate immune cells.

Publisher

Springer Science and Business Media LLC

Subject

Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3