Berthierine and chamosite hydrothermal: genetic guides in the Peña Colorada magnetite-bearing ore deposit, Mexico

Author:

Rivas-Sanchez M. L.,Alva-Valdivia L. M.,Arenas-Alatorre J.,Urrutia-Fucugauchi J.,Ruiz-Sandoval M.,Ramos-Molina M. A.

Abstract

Abstract We report the first finding of berthierine and chamosite in Mexico. They occur in the iron-ore deposit of Peña Colorada, Colima. Their genetic characteristics show two different mineralization events associated mainly to the magnetite ore. Berthierine is an Fe-rich and Mg-low 1:1 layer phyllosilicate of hydrothermal sedimentary origin. Its structure is 7 Å, d hkl [10 0] basal spacing and low degree structural ordering. The phyllosilicate has been identified by a lack of 14 Å basal reflection on X-ray diffraction (XRD) patterns. These data were supported by High Resolution Transmision Electron Microscopy (HRTEM) images that show thick packets of berthierine in well defined parallel plates. From the analysis of Fast Fourier Transform (FFT), we found around [1 0 0] reflections of berhierine 7.12 Å and corresponding angles of hexagonal crystalline structure. Berthierine has a microcrystalline structure, dark green color, and high refraction index (1.64 to 1.65). Birefringence is low, near 0.007 to null and it is associated to nanoparticles (<15 nm) and microparticles of magnetite (<25 μm), fine grain siderite, and organic matter. Its texture is intergranular-interstratified with colloform banding. The chamosite Mg-rich is of hydrothermal epigenetic origin affected by low-degree metamorphism. It is an Fe-rich 2:1 layer silicate, with basal space of 14 Å, d hkl [0 0 1]. The chamosite occurs as lamellar in sizes ranging from 50 to 150 μm. It has intense green color and refraction index from 1.64 to 1.65. The birefringence is near 0.008, with biaxial (-) orientation and a 2V small. It is associated mainly to sericite, epidote, clay, feldspar, and magnetite. Chamosite is emplaced in open spaces filling and linings. Mössbauer spectra of berthierine and chamosite are similar. They show the typical spectra of paramagnetic substances, with two well defined unfoldings corresponding to the oxidation state of Fe+2 and Fe+3. Chemical composition of both minerals was obtained by an electron probe X-ray micro-analyzer (EPMA). The radio Fe+Mg+Mn vs Si and Al show similar chemical compositions and different XRD patterns in the crystalline structure provoked by the environmental conditions of emplacement. A hydrothermal environment was predominant, occurring before, during, and after the magnetite mineralization. The identification of magnetite nanoparticles supports the hypothesis of a marine environment, specifically exhalative sedimentary (SEDEX) for the berthierine.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference29 articles.

1. Bailey, S. W., X-Ray diffraction identification of the polytypes of mica, serpentine and chlorite, Clays and Clay Minerals, 36(3), 193–213, 1988.

2. Bailey, S. W., Structures and composition of other trioctahedral 1:1 phyllosilicates, Hydrous Phyllosilicates (exclusive of micas), Reviews in mineralogy, 19, 179–181, 1991.

3. Bailey, S. W. and B. E. Brown, Chorite polytypism: I. Regular and semirandom one-layer structures, Americal Mineral., 47, 819–850, 1962.

4. Bhattacharyya, D. P., Origin of berthierine in ironstones, Clays and Clay Minerals, 31(3), 173–182, 1983.

5. Brindley, G. W., Chemical compositions of berthierine—a review, Clays and clay Minerals, 30(2), 151–155, 1982.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3