Abstract
AbstractCoarse-grained descriptions of dislocation motion in crystalline metals inherently represent a loss of information regarding dislocation-dislocation interactions. In the present work, we consider a coarse-graining framework capable of re-capturing these interactions by means of the dislocation-dislocation correlation functions. The framework depends on a convolution length to define slip-system-specific dislocation densities. Following a statistical definition of this coarse-graining process, we define a spatial correlation function which will allow the arrangement of the discrete line system at two points—and thus the strength of their interactions at short range—to be recaptured into a mean field description of dislocation dynamics. Through a statistical homogeneity argument, we present a method of evaluating this correlation function from discrete dislocation dynamics simulations. Finally, results of this evaluation are shown in the form of the correlation of dislocation densities on the same slip-system. These correlation functions are seen to depend weakly on plastic strain, and in turn, the dislocation density, but are seen to depend strongly on the convolution length. Implications of these correlation functions in regard to continuum dislocation dynamics as well as future directions of investigation are also discussed.
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. K. -H. Anthony, A. Azirhi, Lagrangian field theory of plasticity and dislocation dynamics Attempts towards unification with thermodynamics of irreversible processes. Arch. Mech.50(3), 345–365 (1998).
2. M. Bao-Tong, C. Laird, Overview of fatigue behavior in copper single crystals-I. Surface morphology and stage I crack initiation sites for tests at constant strain amplitude. Acta Metall.37(2), 325–336 (1989). https://doi.org/10.1016/0001-6160(89)90217-4.
3. N. Bertin, Connecting discrete and continuum dislocation mechanics: A non-singular spectral framework. Int. J. Plast.122:, 268–284 (2019).
4. C. K. Birdsall, D. Fuss, Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. J. Comput. Phys.3(4), 494–511 (1969). https://doi.org/10.1016/0021-9991(69)90058-8.
5. F. F. Csikor, I. Groma, T. Hochrainer, D. Weygand, M. Zaiser, in Proceedings of the 11th International Symposium on Continuum Models and Discrete Systems. On the range of 3D dislocation pair correlations, (2008), pp. 271–276. Mines ParisTech Les Presses. http://arxiv.org/abs/0812.0918.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献