A model for physical dislocation transmission through grain boundaries and its implementation in a discrete dislocation dynamics tool

Author:

Stricker M.,Weygand D.

Abstract

AbstractThe mechanical behavior of most metals in engineering applications is dominated by the grain size. Physics-based models of the interaction between dislocations and the grain boundary are important to correctly predict the plastic deformation behavior of polycrystalline materials. Dislocation-grain boundary interaction is complex and a challenge to model. We present a model for simulating the physical transmission of dislocations through grain boundaries within Discrete Dislocation Dynamics tools. The properties (glide plane, Burgers vector, initial length) of the transmitted dislocation are chosen based on geometric criteria as well as a maximization of the resolved shear stress of the transmitted dislocation. Additionally, stress and displacement transparency as well as the discontinuity are ensured via a grain boundary dislocation – a butterfly-like geometry in the general case – whose properties are selected to minimize the residual Burgers vector at the interface. This additional ‘grain boundary dislocation’ allows a direct comparison as well as a calibration of the model with experiments on the macroscale particularly for neighboring grains with a high dislocation density contrast. Two basic examples illustrate the model and an application to a 40-grain polycrystal demonstrates the scalability of the approach.

Funder

Deutsche Forschungsgemeinschaft

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3