Symmetry breaking during defect self-organization under irradiation

Author:

Zhang Yongfeng,Gao Yipeng,Sun Cheng,Schwen Daniel,Jiang Chao,Gan Jian

Abstract

AbstractOne of the most intriguing phenomena under radiation is the self-organization of defects, such as the void superlattices, which have been observed in a list of bcc and fcc metals and alloys when the irradiation conditions fall into certain windows defined by temperature and dose rate. A superlattice features a lattice parameter and a crystal structure. Previously, it has been shown that the superlattice parameter is given by the wavelength of vacancy concentration waves that develop when the uniform concentration field becomes unstable. This instability is driven thermodynamically by vacancy concentration supersaturation and affected by the irradiation condition. However, a theory that predicts the superlattice symmetry, i.e., the selection of superlattice structure, has remained missing decades after the first report of superlattices. By analyzing the nonlinear recombination between vacancies and self-interstitial-atoms (SIAs) in the discrete lattice space, this work establishes the physical connection between symmetry breaking and anisotropic SIA diffusion, allowing for predictions of void ordering during defect self-organization. The results suggest that while the instability is driven thermodynamically by vacancy supersaturation, the symmetry development is kinetically rather than thermodynamically driven. The significance of SIA diffusion anisotropy in affecting superlattice formation under irradiation is also indicated. Various superlattice structures can be predicted based on different SIA diffusion modes, and the predictions are in good agreement with atomistic simulations and previous experimental observations.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3