Abstract
AbstractThe current interest in compositionally complex alloys including so called high entropy alloys has caused renewed interest in the general problem of solute hardening. It has been suggested that this problem can be addressed by treating the alloy as an effective medium containing a random distribution of dilatation and compression centers representing the volumetric misfit of atoms of different species. The mean square stresses arising from such a random distribution can be calculated analytically, their spatial correlations are strongly anisotropic and exhibit long-range tails with third-order power law decay (Geslin and Rodney 2021; Geslin et al. 2021). Here we discuss implications of the anisotropic and long-range nature of the correlation functions for the pinning of dislocations of arbitrary orientation. While edge dislocations are found to follow the standard pinning paradigm, for dislocations of near screw orientation we demonstrate the co-existence of two types of pinning energy minima.
Funder
Deutsche Forschungsgemeinschaft
Friedrich-Alexander-Universität Erlangen-Nürnberg
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. B. Bakó, D. Weygand, M. Samaras, W. Hoffelner, M. Zaiser, Dislocation depinning transition in a dispersion-strengthened steel. Phys. Rev. B. 78(14), 144104 (2008).
2. P. Chauve, T. Giamarchi, P. Le Doussal, Creep and depinning in disordered media. Phys. Rev. B. 62(10), 6241 (2000).
3. S. F. Edwards, D. Wilkinson, The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A. Math. Phys. Sci.381(1780), 17–31 (1982).
4. P. -A. Geslin, D. Rodney, Microelasticity model of random alloys. part i: mean square displacements and stresses. J. Mech. Phys. Solids. 153:, 104479 (2021).
5. P. -A. Geslin, A. Rida, D. Rodney, Microelasticity model of random alloys. part ii: displacement and stress correlations. J. Mech. Phys. Solids. 153:, 104480 (2021).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献