Role of interfaces on the mechanical response of accumulative roll bonded nanometallic laminates investigated via dislocation dynamics simulations

Author:

Chakraborty Aritra,Kohnert Aaron A.,Hunter Abigail,Capolungo Laurent

Abstract

AbstractUnraveling the effects of continuous dislocation interactions with interfaces, particularly at the nanometer length scales, is key to a broader understanding of plasticity, to material design and to material certification. To this end, this work proposes a novel discrete dislocation dynamics-based model for dislocation interface interactions tracking the fate of residual dislocation on interfaces. This new approach is used to predict the impact of dislocation/interface reactions on the overall mechanical behavior of accumulative roll bonded nanometallic laminates. The framework considers the dynamic evolution of the interface concurrent with a large network of dislocations, thus, accounting for the local short and long range effects of the dislocations under the external boundary conditions. Specifically, this study focuses on two-phase Fe/Cu nanometallic laminates, and investigates the role of the underlying elastic and plastic contrast of the Fe and the Cu layers on the composite response of the material. Moreover, the role of initial microstructures, resulting from processing is also investigated. Subsequently, the model is used to examine the effect of layer thickness and interface orientation relationship on the residual stresses of the relaxed microstructure. The associated mechanical response of these laminates are compared when loaded under normal direction compression, as well as shear compression. Finally, this work predicts a dominant effect of the layer thickness, as compared to the interface orientation relationship, on the macroscopic response and on the residual stresses of these nanolaminates, while the local dislocation transmission propensity through the interface is significantly influenced by the corresponding orientation relationship.

Funder

LDRD Program LANL

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3