Periodic plane-wave electronic structure calculations on quantum computers

Author:

Song Duo,Bauman Nicholas P.,Prawiroatmodjo Guen,Peng Bo,Granade Cassandra,Rosso Kevin M.,Low Guang Hao,Roetteler Martin,Kowalski Karol,Bylaska Eric J.

Abstract

AbstractA procedure for defining virtual spaces, and the periodic one-electron and two-electron integrals, for plane-wave second quantized Hamiltonians has been developed, and it was validated using full configuration interaction (FCI) calculations, as well as executions of variational quantum eigensolver (VQE) circuits on Quantinuum’s ion trap quantum computers accessed through Microsoft’s Azure Quantum service. This work is an extension to periodic systems of a new class of algorithms in which the virtual spaces were generated by optimizing orbitals from small pairwise CI Hamiltonians, which we term as correlation optimized virtual orbitals with the abbreviation COVOs. In this extension, the integration of the first Brillouin zone is automatically incorporated into the two-electron integrals. With these procedures, we have been able to derive virtual spaces, containing only a few orbitals, that were able to capture a significant amount of correlation. The focus in this manuscript is on comparing the simulations of small molecules calculated with plane-wave basis sets with large periodic unit cells at the $$\Gamma$$ Γ -point, including images, to results for plane-wave basis sets with aperiodic unit cells. The results for this approach were promising, as we were able to obtain good agreement between periodic and aperiodic results for an LiH molecule. Calculations performed on the Quantinuum H1-1 quantum computer produced surprisingly good energies, in which the error mitigation played a small role in the quantum hardware calculations and the (noisy) quantum simulator results. Using a modest number of circuit runs (500 shots), we reproduced the FCI values for the 1 COVO Hamiltonian with an error of 11 milliHartree, which is expected to improve with a larger number of circuit runs.

Funder

U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NWChem and NWChemEx Plane-Wave Methods;Comprehensive Computational Chemistry;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3