1. Amorim, JH, Rodrigues, V, Tavares, R, Valente, J, Borrego, C (2013). CFD modelling of the aerodynamic effect of tree on urban air pollution dispersion. Science of the Total Environment, 461–462, 541–551.
2. Blocken, B, Janssen, W, van Hooff, T (2012). CFD simulation for pedestrian wind comfort and wind safety in urban areas: general decision framework and case study for the Eindhoven University campus. Environmental Modelling & Software
30, 15–34.
3. Finnigan, J, & Shaw, R (2008). Double-averaging methodology and its application to turbulent flow in and above vegetation canopies. Acta Geophysica, 56(3), 534–561.
4. Franke, J, Hirsch, C, Jensen, AG, Krüs, HW, Schatzmann, M, Westbury, PS, Miles, SD, Wisse, JA, Wright, NG (2004). Recommendations on the use of CFD in wind engineering. In COST Action C14, Impact of Wind and Storm on City Life Built Environment. Proceedings of the International Conference on Urban Wind Engineering and Building Aerodynamics, 5–7 May 2004, von Karman Institute, Sint-Genesius-Rode, Belgium, (Vol. 14, p. C1).
5. Hakimi, R, & Lubitz, WD (2014). Wind environment at a roof-mounted wind turbine on a peaked roof building. International Journal of Sustainable Energy,doi:10.1080/14786451.2014.910516.