Using hospitalization data for injury surveillance in agriculture, forestry and fishing: a crosswalk between ICD10CM external cause of injury coding and The Occupational Injury and Illness Classification System

Author:

Scott ErikaORCID,Hirabayashi Liane,Graham Judy,Krupa Nicole,Jenkins Paul

Abstract

Abstract Background While statistics related to occupational injuries exist at state and national levels, there are notable difficulties with using these to understand non-fatal injuries trends in agriculture, forestry, and commercial fishing. This paper describes the development and testing of a crosswalk between ICD-10-CM external cause of injury codes (E-codes) for agriculture, forestry, and fishing (AFF) and the Occupational Injury and Illness Classification System (OIICS). By using this crosswalk, researchers can efficiently process hospitalization data and quickly assemble relevant cases of AFF injuries useful for epidemiological tracking. Methods All 6810 ICD-10-CM E- codes were double-reviewed and tagged for AFF- relatedness. Those related to AFF were then coded into a crosswalk to OIICS. The crosswalk was tested on hospital data (inpatient, outpatient, and emergency department) from New York, Massachusetts, and Vermont using SAS9.3. Injury records were characterized by type of event, source of injury, and by general demographics using descriptive epidemiology. Results Of the 6810 E-codes available in the ICD-10-CM scheme, 263 different E-codes were ultimately classified as 1 = true case, 2 = traumatic/acute and suspected AFF, or 3 = AFF and suspected traumatic/acute. The crosswalk mapping identified 9969 patient records either confirmed to be or suspected to be an AFF injury out of a total of 38,412,241 records in the datasets, combined. Of these, 963 were true cases of agricultural injury. The remaining 9006 were suspected AFF cases, where the E-code was not specific enough to assign certainty to the record’s work-relatedness. For the true agricultural cases, the most frequent combinations presented were contact with agricultural/garden equipment (301), non-roadway incident involving off-road vehicle (222), and struck by cow or other bovine (150). For suspected agricultural cases, the majority (68.2%) represent animal-related injuries. Conclusions The crosswalk provides a reproducible, low-cost, rapid means to identify and code AFF injuries from hospital data. The use of this crosswalk is best suited to identifying true agricultural cases; however, capturing suspected cases of agriculture, forestry, and fishing injury also provides valuable data.

Funder

National Institute for Occupational Safety and Health

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference51 articles.

1. Allen DL, Kearney GD, Higgins S. A descriptive study of farm-related injuries presenting to emergency departments in North Carolina: 2008-2012. J Agromed. 2015;20(4):398–408.

2. BLS. Survey of Occupational Injuries and Illnesses (SOII) Respondents Home Page 2015a [Available from: http://www.bls.gov/respondents/iif/.

3. BLS. Occupational Injury and Illness Classification System (OIICS): CDC NIOSH; 2015b [Available from: http://wwwn.cdc.gov/wisards/oiics/.

4. Browning SR, Truszczynska H, Reed D, McKnight RH. Agricultural injuries among older Kentucky farmers: the farm family health and Hazard surveillance study. Am J Ind Med. 1998;33(4):341–53.

5. CDC. Updated Guidelines for Evaluating Public Health Surveillance Systems 2001 [Available from: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5013a1.htm.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3