Abstract
Abstract
Background
While statistics related to occupational injuries exist at state and national levels, there are notable difficulties with using these to understand non-fatal injuries trends in agriculture, forestry, and commercial fishing. This paper describes the development and testing of a crosswalk between ICD-10-CM external cause of injury codes (E-codes) for agriculture, forestry, and fishing (AFF) and the Occupational Injury and Illness Classification System (OIICS). By using this crosswalk, researchers can efficiently process hospitalization data and quickly assemble relevant cases of AFF injuries useful for epidemiological tracking.
Methods
All 6810 ICD-10-CM E- codes were double-reviewed and tagged for AFF- relatedness. Those related to AFF were then coded into a crosswalk to OIICS. The crosswalk was tested on hospital data (inpatient, outpatient, and emergency department) from New York, Massachusetts, and Vermont using SAS9.3. Injury records were characterized by type of event, source of injury, and by general demographics using descriptive epidemiology.
Results
Of the 6810 E-codes available in the ICD-10-CM scheme, 263 different E-codes were ultimately classified as 1 = true case, 2 = traumatic/acute and suspected AFF, or 3 = AFF and suspected traumatic/acute. The crosswalk mapping identified 9969 patient records either confirmed to be or suspected to be an AFF injury out of a total of 38,412,241 records in the datasets, combined. Of these, 963 were true cases of agricultural injury. The remaining 9006 were suspected AFF cases, where the E-code was not specific enough to assign certainty to the record’s work-relatedness. For the true agricultural cases, the most frequent combinations presented were contact with agricultural/garden equipment (301), non-roadway incident involving off-road vehicle (222), and struck by cow or other bovine (150). For suspected agricultural cases, the majority (68.2%) represent animal-related injuries.
Conclusions
The crosswalk provides a reproducible, low-cost, rapid means to identify and code AFF injuries from hospital data. The use of this crosswalk is best suited to identifying true agricultural cases; however, capturing suspected cases of agriculture, forestry, and fishing injury also provides valuable data.
Funder
National Institute for Occupational Safety and Health
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Allen DL, Kearney GD, Higgins S. A descriptive study of farm-related injuries presenting to emergency departments in North Carolina: 2008-2012. J Agromed. 2015;20(4):398–408.
2. BLS. Survey of Occupational Injuries and Illnesses (SOII) Respondents Home Page 2015a [Available from: http://www.bls.gov/respondents/iif/.
3. BLS. Occupational Injury and Illness Classification System (OIICS): CDC NIOSH; 2015b [Available from: http://wwwn.cdc.gov/wisards/oiics/.
4. Browning SR, Truszczynska H, Reed D, McKnight RH. Agricultural injuries among older Kentucky farmers: the farm family health and Hazard surveillance study. Am J Ind Med. 1998;33(4):341–53.
5. CDC. Updated Guidelines for Evaluating Public Health Surveillance Systems 2001 [Available from: http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5013a1.htm.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献