Prevention of thromboembolism in spinal cord injury -S1 guideline

Author:

Weidner NorbertORCID,Müller Oliver J.,Hach-Wunderle Viola,Schwerdtfeger Karsten,Krauspe Rüdiger,Pauschert Rolf,Waydhas Christian,Baumberger Michael,Göggelmann Christoph,Wittgruber Gabriela,Wildburger Renate,Marcus Oswald

Abstract

Abstract Introduction Traumatic and non-traumatic spinal cord injury bears a high risk for thromboembolism in the first few months after injury. So far, there is no consented guideline regarding diagnostic and prophylactic measures to prevent thromboembolic events in spinal cord injury. Based on a Pubmed research of related original papers and review articles, international guidelines and a survey conducted in German-speaking spinal cord injury centers about best practice prophylactic procedures at each site, a consensus process was initiated, which included spinal cord medicine experts and representatives from medical societies involved in the comprehensive care of spinal cord injury patients. The recommendations comply with the German S3 practice guidelines on prevention of venous thromboembolism. Recommendations Specific clinical or instrument-based screening methods are not recommended in asymptomatic SCI patients. Based on the severity of neurological dysfunction (motor completeness, ambulatory function) low dose low molecular weight heparins are recommended to be administered up to 24 weeks after injury. Besides, mechanical methods (compression stockings, intermittent pneumatic compression) can be applied. In chronic SCI patients admitted to the hospital, thromboembolism prophylactic measures need to be based on the reason for admission and the necessity for immobilization. Conclusions Recommendations for thromboembolism diagnostic and prophylactic measures follow best practice in most spinal cord injury centers. More research evidence needs to be generated to administer more individually tailored risk-adapted prophylactic strategies in the future, which may help to further prevent thromboembolic events without causing major side effects. The present article is a translation of the guideline recently published online (https://www.awmf.org/uploads/tx_szleitlinien/179-015l_S1_Thromboembolieprophylaxe-bei-Querschnittlaehmung_2020-09.pdf).

Publisher

Springer Science and Business Media LLC

Subject

Automotive Engineering

Reference30 articles.

1. Adam, S. S., McDuffie, J. R., Lachiewicz, P. F., Ortel, T. L., & Williams Jr., J. W. (2013). Comparative effectiveness of new oral anticoagulants and standard thromboprophylaxis in patients having total hip or knee replacement: a systematic review. Annals of Internal Medicine, 159(4), 275–284. https://doi.org/10.7326/0003-4819-159-4-201308200-00008.

2. Arnold, P. M., Harrop, J. S., Merli, G., Tetreault, L. G., Kwon, B. K., Casha, S., … Norvell, D. C. (2017). Efficacy, safety, and timing of anticoagulant Thromboprophylaxis for the prevention of venous thromboembolism in patients with acute spinal cord injury: a systematic review. Global Spine Journal, 7(3 Suppl), 138S–150S. https://doi.org/10.1177/2192568217703665.

3. Chen, D., Geerts, W. H., Lee, M. Y., Strayer, J. R., & Vogel, L. C. (2016). Prevention of thromboembolism in spinal cord injury. In Consortium for spinal cord medicine - clinical practice guidelines, (pp. 1–56). Washington, D.C.: Paralyzed Veterans of America.

4. Chung, S. B., Lee, S. H., Kim, E. S., & Eoh, W. (2011). Incidence of deep vein thrombosis after spinal cord injury: a prospective study in 37 consecutive patients with traumatic or nontraumatic spinal cord injury treated by mechanical prophylaxis. The Journal of Trauma, 71(4), 867–870; discussion 870-861. https://doi.org/10.1097/TA.0b013e31822dd3be.

5. CLOTS Trials Collaboration, Dennis, M., Sandercock, P., Reid, J., Graham, C., Forbes, J., & Murray, G. (2013). Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. Lancet, 382(9891), 516–524. https://doi.org/10.1016/S0140-6736(13)61050-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3