Signatures of immune reprogramming in anti-CD52 therapy of MS: markers for risk stratification and treatment response

Author:

Bierhansl LauraORCID,Ruck Tobias,Pfeuffer Steffen,Gross Catharina C.,Wiendl Heinz,Meuth Sven G.

Abstract

Abstract Background Multiple sclerosis is one of the most prevalent neurological diseases in young adults affecting over 2 million people worldwide. Alemtuzumab is a highly effective therapy in relapsing remitting MS. Alemtuzumab is a monoclonal CD52 antibody that proved its efficacy against an active comparator (interferon [IFN]-β1a) in a phase II trial and two phase III trials regarding clinical and MRI outcomes. Nevertheless, the exact mode of action is still unknown. Alemtuzumab is commonly associated with secondary autoimmune disorders significantly affecting the risk-benefit ratio. Therefore, new biomarkers predicting treatment response and adverse events are urgently needed. This study aims to further elucidate the mechanism of action of the neuroprotective potential of alemtuzumab in relapsing-remitting multiple sclerosis (RRMS). Methods/Design This is a 3-year multicentre, explorative study including overall 150 patients comprising three different groups: (i) de novo patients prior and after alemtuzumab treatment initiation, (ii) patients under alemtuzumab treatment and (iii) patients requiring more than two alemtuzumab infusions. Peripheral blood and serum samples will be collected semi-annually for several in vitro/ex vivo assays to detect and characterize immune cells including their functional activity. Furthermore, data of MRI scans and disease-related impairment (using EDSS and MSFC), as well as the number and time of relapses, will be assessed. The clinical study is registered at clinicaltrials.gov (NCT04082260). Perspective Our study will provide deep insights into the underlying immunological changes in a longitudinal analysis of alemtuzumab treated RRMS patients. By combining clinical, radiological and functional immune-phenotype data, we will be able to identify biomarkers and/or immune signatures predicting treatment response and adverse events. Thereby, the understanding of the mechanisms of action of alemtuzumab will improve its efficacy and safety for present and future patients.

Funder

Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3