Genome-wide epigenetic analyses in Japanese immigrant plantation workers with Parkinson’s disease and exposure to organochlorines reveal possible involvement of glial genes and pathways involved in neurotoxicity

Author:

Go Rodney C. P.,Corley Michael J.,Ross G. Webster,Petrovitch Helen,Masaki Kamal H.,Maunakea Alika K.,He Qimei,Tiirikainen Maarit I.ORCID

Abstract

Abstract Background Parkinson’s disease (PD) is a disease of the central nervous system that progressively affects the motor system. Epidemiological studies have provided evidence that exposure to agriculture-related occupations or agrichemicals elevate a person’s risk for PD. Here, we sought to examine the possible epigenetic changes associated with working on a plantation on Oahu, HI and/or exposure to organochlorines (OGC) in PD cases. Results We measured genome-wide DNA methylation using the Illumina Infinium HumanMethylation450K BeadChip array in matched peripheral blood and postmortem brain biospecimens in PD cases (n = 20) assessed for years of plantation work and presence of organochlorines in brain tissue. The comparison of 10+ to 0 years of plantation work exposure detected 7 and 123 differentially methylated loci (DML) in brain and blood DNA, respectively (p < 0.0001). The comparison of cases with 4+ to 0–2 detectable levels of OGCs, identified 8 and 18 DML in brain and blood DNA, respectively (p < 0.0001). Pathway analyses revealed links to key neurotoxic and neuropathologic pathways related to impaired immune and proinflammatory responses as well as impaired clearance of damaged proteins, as found in the predominantly glial cell population in these environmental exposure-related PD cases. Conclusions These results suggest that distinct DNA methylation biomarker profiles related to environmental exposures in PD cases with previous exposure can be found in both brain and blood.

Funder

Michael J. Fox Foundation for Parkinson's Research

U.S. Army Medical Research Acquisition Activity

National Institute of Neurological Disorders and Stroke

National Institute on Aging

Office of Research and Development

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3