Association between the vertebrobasilar artery geometry and basilar artery plaques determined by high-resolution magnetic resonance imaging

Author:

Zheng Jinmei,Sun Bin,Lin Ruolan,Teng Yongqi,Zhao Xihai,Xue Yunjing

Abstract

Abstract Background Atherosclerotic plaques are often present in regions of arteries with complicated flow patterns. Vascular morphology plays important role in hemodynamics. In this study, we investigated the relationship between the geometry of the vertebrobasilar artery system and presence of basilar artery (BA) plaque. Methods We enrolled 290 patients with posterior circulation ischemic stroke. We distinguished four configurations of the vertebrobasilar artery: Walking, Tuning Fork, Lambda, and No Confluence. Patients were divided into multi-bending (≥ 3 bends) and oligo-bending (< 3 bends) VA groups. The diameter of the vertebral artery (VA) and the number of bends in the intracranial VA segment were assessed using three-dimensional time-of-flight magnetic resonance angiography. High-resolution magnetic resonance imaging was used to evaluate BA plaques. Logistic regression models were used to determine the relationship between the geometry type and BA plaque prevalence. Results After adjusting for sex, age, body mass index ≥ 28, hypertension, and diabetes mellitus, the Walking, Lambda, and No Confluence geometries were associated with the presence of BA plaque (all p < 0.05). Patients with multi-bending VAs in both the Walking (20/28, 71.43% vs. 6/21, 28.57%, p = 0.003) and Lambda group (19/47, 40.43% vs. 21/97, 21.65%, p = 0.018) had more plaques compared to patients with oligo-bending VAs in these groups. In the Lambda group, the difference in diameter of bilateral VAs was larger in patients with BA plaques than that in patients without BA plaques (1.4 mm [IQR: 0.9–1.6 mm] vs. 0.9 mm [IQR: 0.6–1.3 mm], p < 0.001). Conclusions The Walking, Lambda, and No Confluence geometry, ≥ 3 bends in the VAs, and a large diameter difference between bilateral VAs are associated with the presence of BA plaque.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3