Early differentiation of neurodegenerative diseases using the novel QSM technique: what is the biomarker of each disorder?

Author:

Nikparast Farzaneh,Ganji Zohreh,Zare Hoda

Abstract

AbstractDuring neurodegenerative diseases, the brain undergoes morphological and pathological changes; Iron deposits are one of the causes of pathological changes in the brain. The Quantitative susceptibility mapping (QSM) technique, a type of magnetic resonance (MR) image reconstruction, is one of the newest diagnostic methods for iron deposits to detect changes in magnetic susceptibility. Numerous research projects have been conducted in this field. The purpose of writing this review article is to identify the first deep brain nuclei that undergo magnetic susceptibility changes during neurodegenerative diseases such as Alzheimer's or Parkinson's disease. The purpose of this article is to identify the brain nuclei that are prone to iron deposition in any specific disorder. In addition to the mentioned purpose, this paper proposes the optimal scan parameters and appropriate algorithms of each QSM reconstruction step by reviewing the results of different articles. As a result, The QSM technique can identify nuclei exposed to iron deposition in various neurodegenerative diseases. Also, the selection of scan parameters is different based on the sequence and purpose; an example of the parameters is placed in the tables. The BET toolbox in FSL, Laplacian-based phase-unwrapping process, the V_SHARP algorithm, and morphology-enabled dipole inversion (MEDI) method are the most widely used algorithms in various stages of QSM reconstruction.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Progression of Current Biomarkers for the Diagnosis of Alzheimer's Disease;Highlights in Science, Engineering and Technology;2023-03-21

2. QSM Throughout the Body;Journal of Magnetic Resonance Imaging;2023-02-07

3. Iron- and Neuromelanin-Weighted Neuroimaging to Study Mitochondrial Dysfunction in Patients with Parkinson’s Disease;International Journal of Molecular Sciences;2022-11-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3