Effect of increased positive end-expiratory pressure on intracranial pressure and cerebral oxygenation: impact of respiratory mechanics and hypovolemia

Author:

Chen Han,Zhou Xiao-Fen,Zhou Da-Wei,Zhou Jian-Xin,Yu Rong-GuoORCID

Abstract

Abstract Background To evaluate the impact of positive end-expiratory pressure (PEEP) on intracranial pressure (ICP) in animals with different respiratory mechanics, baseline ICP and volume status. Methods A total of 50 male adult Bama miniature pigs were involved in four different protocols (n = 20, 12, 12, and 6, respectively). Under the monitoring of ICP, brain tissue oxygen tension and hemodynamical parameters, PEEP was applied in increments of 5 cm H2O from 5 to 25 cm H2O. Measurements were taken in pigs with normal ICP and normovolemia (Series I), or with intracranial hypertension (via inflating intracranial balloon catheter) and normovolemia (Series II), or with intracranial hypertension and hypovolemia (via exsanguination) (Series III). Pigs randomized to the control group received only hydrochloride instillation while the intervention group received additional chest wall strapping. Common carotid arterial blood flow before and after exsanguination at each PEEP level was measured in pigs with intracranial hypertension and chest wall strapping (Series IV). Results ICP was elevated by increased PEEP in both normal ICP and intracranial hypertension conditions in animals with normal blood volume, while resulted in decreased ICP with PEEP increments in animals with hypovolemia. Increasing PEEP resulted in a decrease in brain tissue oxygen tension in both normovolemic and hypovolemic conditions. The impacts of PEEP on hemodynamical parameters, ICP and brain tissue oxygen tension became more evident with increased chest wall elastance. Compare to normovolemic condition, common carotid arterial blood flow was further lowered when PEEP was raised in the condition of hypovolemia. Conclusions The impacts of PEEP on ICP and cerebral oxygenation are determined by both volume status and respiratory mechanics. Potential conditions that may increase chest wall elastance should also be ruled out to avoid the deleterious effects of PEEP.

Funder

National Natural Science Foundation of China

High-level Hospital Foster Grants from Fujian Provincial Hospital

General Program of Natural Science Foundation of Fujian Provincial

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3