Author:
Yilizati-Yilihamu Elzat Elham,Yang Jintao,Yang Zimeng,Rong Feihao,Feng Shiqing
Abstract
Abstract
Background
Intervertebral disc herniation, degenerative lumbar spinal stenosis, and other lumbar spine diseases can occur across most age groups. MRI examination is the most commonly used detection method for lumbar spine lesions with its good soft tissue image resolution. However, the diagnosis accuracy is highly dependent on the experience of the diagnostician, leading to subjective errors caused by diagnosticians or differences in diagnostic criteria for multi-center studies in different hospitals, and inefficient diagnosis. These factors necessitate the standardized interpretation and automated classification of lumbar spine MRI to achieve objective consistency. In this research, a deep learning network based on SAFNet is proposed to solve the above challenges.
Methods
In this research, low-level features, mid-level features, and high-level features of spine MRI are extracted. ASPP is used to process the high-level features. The multi-scale feature fusion method is used to increase the scene perception ability of the low-level features and mid-level features. The high-level features are further processed using global adaptive pooling and Sigmoid function to obtain new high-level features. The processed high-level features are then point-multiplied with the mid-level features and low-level features to obtain new high-level features. The new high-level features, low-level features, and mid-level features are all sampled to the same size and concatenated in the channel dimension to output the final result.
Results
The DSC of SAFNet for segmenting 17 vertebral structures among 5 folds are 79.46 ± 4.63%, 78.82 ± 7.97%, 81.32 ± 3.45%, 80.56 ± 5.47%, and 80.83 ± 3.48%, with an average DSC of 80.32 ± 5.00%. The average DSC was 80.32 ± 5.00%. Compared to existing methods, our SAFNet provides better segmentation results and has important implications for the diagnosis of spinal and lumbar diseases.
Conclusions
This research proposes SAFNet, a highly accurate and robust spine segmentation deep learning network capable of providing effective anatomical segmentation for diagnostic purposes. The results demonstrate the effectiveness of the proposed method and its potential for improving radiological diagnosis accuracy.
Funder
NSFC Key Projects of International Cooperation and Exchanges
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,General Neuroscience
Reference28 articles.
1. Banzato T, Bernardini M, Cherubini GB, et al. Texture analysis of magnetic resonance images to predict histologic grade of meningiomas in dogs. Am J Vet Res. 2017;78:1156–62.
2. Galbusera F, Casaroli G, Bassani T. Artificial intelligence and machine learning in spine research. JOR spine. 2019;2:e1044.
3. Zheng HD, Sun YL, Kong DW, et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI. Nat Commun. 2022;13:841.
4. Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30.
5. Peng Z, Zhong J, Wee W, et al. Automated vertebra detection and segmentation from the whole spine MR images. In: IEEE. 2006. pp. 2527–30.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献