Hypothetical molecular interconnection between type 2 diabetes and dyslexia

Author:

Bülbül Tuğba,Baharlooie Maryam,Safaeinejad Zahra,Gure Ali Osmay,Ghaedi Kamran

Abstract

Abstract Background Dyslexia is one of the most common learning disabilities, especially among children. Type 2 diabetes is a metabolic disorder that affects a large population globally, with metabolic disorders. There have been several genes that are identified as causes of Dyslexia, and in recent studies, it has been found out that some of those genes are also involved in several metabolic pathways. For several years, it has been known that type 2 diabetes causes several neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Furthermore, in several studies, it was suggested that type 2 diabetes also has some associations with learning disabilities. This raises the question of whether “Is there a connection between type 2 diabetes and dyslexia?”. In this study, this question is elaborated by linking their developmental processes via bioinformatics analysis about these two diseases individually and collectively. Result The literature review for dyslexia and type two diabetes was completed. As the result of this literature review, the genes that are associated to type 2 diabetes and dyslexia were identified. The biological pathways of dyslexia, and dyslexia associated genes, type 2 diabetes, and type 2 diabetes associated genes were identified. The association of these genes, regarding to their association with pathways were analysed, and using STRING database the gene associations were analysed and identified. Conclusion The findings of this research included the interaction analysis via gene association, co-expression and protein–protein interaction. These findings clarified the interconnection between dyslexia and type 2 diabetes in molecular level and it will be the beginning of an answer regarding to the relationship between T2D and dyslexia. Finally, by improving the understanding this paper aims to open the way for the possible future approach to examine this hypothesis.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3